Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMC Biol ; 21(1): 2, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36600240

ABSTRACT

BACKGROUND: The black cutworm, Agrotis ipsilon, is a serious global underground pest. Its distinct phenotypic traits, especially its polyphagy and ability to migrate long distances, contribute to its widening distribution and increasing difficulty of control. However, knowledge about these traits is still limited. RESULTS: We generated a high-quality chromosome-level assembly of A. ipsilon using PacBio and Hi-C technology with a contig N50 length of ~ 6.7 Mb. Comparative genomic and transcriptomic analyses showed that detoxification-associated gene families were highly expanded and induced after insects fed on specific host plants. Knockout of genes that encoded two induced ABC transporters using CRISPR/Cas9 significantly reduced larval growth rate, consistent with their contribution to host adaptation. A comparative transcriptomic analysis between tethered-flight moths and migrating moths showed expression changes in the circadian rhythm gene AiCry2 involved in sensing photoperiod variations and may receipt magnetic fields accompanied by MagR and in genes that regulate the juvenile hormone pathway and energy metabolism, all involved in migration processes. CONCLUSIONS: This study provides valuable genomic resources for elucidating the mechanisms involved in moth migration and developing innovative control strategies.


Subject(s)
Moths , Animals , Seasons , Moths/genetics , Larva , Gene Expression Profiling , Chromosomes
2.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569400

ABSTRACT

Utilizing large-scale epigenomics data, deep learning tools can predict the regulatory activity of genomic sequences, annotate non-coding genetic variants, and uncover mechanisms behind complex traits. However, these tools primarily rely on human or mouse data for training, limiting their performance when applied to other species. Furthermore, the limited exploration of many species, particularly in the case of livestock, has led to a scarcity of comprehensive and high-quality epigenetic data, posing challenges in developing reliable deep learning models for decoding their non-coding genomes. The cross-species prediction of the regulatory genome can be achieved by leveraging publicly available data from extensively studied organisms and making use of the conserved DNA binding preferences of transcription factors within the same tissue. In this study, we introduced DeepSATA, a novel deep learning-based sequence analyzer that incorporates the transcription factor binding affinity for the cross-species prediction of chromatin accessibility. By applying DeepSATA to analyze the genomes of pigs, chickens, cattle, humans, and mice, we demonstrated its ability to improve the prediction accuracy of chromatin accessibility and achieve reliable cross-species predictions in animals. Additionally, we showcased its effectiveness in analyzing pig genetic variants associated with economic traits and in increasing the accuracy of genomic predictions. Overall, our study presents a valuable tool to explore the epigenomic landscape of various species and pinpoint regulatory deoxyribonucleic acid (DNA) variants associated with complex traits.


Subject(s)
Deep Learning , Animals , Humans , Cattle , Swine , Mice , Chickens/genetics , Chromatin/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , DNA
3.
Pestic Biochem Physiol ; 154: 46-59, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30765056

ABSTRACT

When any living organism is frequently exposed to any drugs or toxic substances, they evolve different detoxification mechanism to confront with toxicants during absorption and metabolism. Likewise, the insects have evolved detoxification mechanisms as they are frequently exposed to different toxic secondary plant metabolites and commercial insecticides. ABC transporter superfamily is one of the largest and ubiquitous group of proteins which play an important role in phase III of the detoxification process. However, knowledge about this gene family remains largely unknown. To help fill this gap, we have identified a total of 54 ABC transporters in the Helicoverpa armigera genome which are classified into eight subfamilies (A-H) by phylogenetic analysis. The temporal and spatial expression profiles of these 54 ABC transporters throughout H. armigera development stages and seven tissues and their responses to five different insecticides, were investigated using RNA-seq analysis. Furthermore, the mRNA expression of eight selected genes in different tissues and six genes responses to insecticides were confirmed by the quantitative real-time PCR (RT-qPCR). Moreover, H. armigera become more sensitive to abamectin and indoxacarb when P-gp was inhibited. These results provide a foundation for further studies of ABCs in H. armigera.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Insect Proteins/genetics , Insecticides/toxicity , Larva/drug effects , Moths/drug effects , Animals , Chlorpyrifos/toxicity , Female , Hydrazines/toxicity , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Larva/genetics , Male , Moths/genetics , Nitriles/toxicity , Oxazines/toxicity , Pyrethrins/toxicity , Transcription, Genetic/drug effects
4.
Mater Horiz ; 10(9): 3660-3667, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37350178

ABSTRACT

Membranes with ultrapermeability for CO2 are desired for future large-scale carbon capture projects, because of their excellent separative productivity and economic efficiency. Herein, we demonstrate that a membrane with ultrapermeability for CO2 can be constructed by combining N/O para-doped noble carbons, C2NxO1-x, with high-permeability polymer PIM-1. The optimal PIM-1/C2NxO1-x membranes exhibit superior CO2 permeability (22110 Barrer) with a CO2/N2 selectivity of 15.5, and an unprecedented CO2 permeability of 37272 Barrer can be obtained after a PEG activation treatment, far surpassing the 2008 upper bound. Both broad experiments and molecular dynamics simulations reveal that the numerous ordered polar channels of C2NxO1-x and their excellent compatibility with PIM-1 are responsible for the superior CO2 separation performance of the membrane. Although this is the first study on C2N-type gas separation membranes, the outstanding results indicate that noble carbon building blocks may pave a new avenue to advance high-performance CO2 separation membranes.

5.
Front Bioeng Biotechnol ; 11: 1308725, 2023.
Article in English | MEDLINE | ID: mdl-38169725

ABSTRACT

Introduction: Pregnanediol-3-glucuronide (PdG), as the main metabolite of progesterone in urine, plays a significant role in the prediction of ovulation, threatened abortion, and menstrual cycle maintenance. Methods: To achieve a rapid and sensitive assay, we have designed a competitive model-based time-resolved fluorescence microsphere-lateral flow immunochromatography (TRFM-LFIA) strip. Results: The optimized TRFM-LFIA strip exhibited a wonderful response to PdG over the range of 30-2,000 ng/mL, the corresponding limit of detection (LOD) was calculated as low as 8.39 ng/mL. More importantly, the TRFM-LFIA strip was innovatively used for the quantitative detection of PdG in urine sample, and excellent recovery results were also obtained, ranging from 97.39% to 112.64%. Discussion: The TRFMLFIA strip possessed robust sensitivity and selectivity in the determination of PdG, indicating the great potential of being powerful tools in the biomedical and diagnosis region.

6.
Innovation (Camb) ; 4(4): 100454, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37388193

ABSTRACT

The cotton bollworm, Helicoverpa armigera, is set to become the most economically devastating crop pest in the world, threatening food security and biosafety as its range expands across the globe. Key to understanding the eco-evolutionary dynamics of H. armigera, and thus its management, is an understanding of population connectivity and the adaptations that allow the pest to establish in unique environments. We assembled a chromosome-scale reference genome and re-sequenced 503 individuals spanning the species range to delineate global patterns of connectivity, uncovering a previously cryptic population structure. Using a genome-wide association study (GWAS) and cell line expression of major effect loci, we show that adaptive changes in a temperature- and light-sensitive developmental pathway enable facultative diapause and that adaptation of trehalose synthesis and transport underlies cold tolerance in extreme environments. Incorporating extensive pesticide resistance monitoring, we also characterize a suite of novel pesticide and Bt resistance alleles under selection in East China. These findings offer avenues for more effective management strategies and provide insight into how insects adapt to variable climatic conditions and newly colonized environments.

7.
Elife ; 102021 07 15.
Article in English | MEDLINE | ID: mdl-34263726

ABSTRACT

Bacillus thuringiensis (Bt) crops have been widely planted and the effects of Bt-crops on populations of the target and non-target insect pests have been well studied. However, the effects of Bt-crops exposure on microorganisms that interact with crop pests have not previously been quantified. Here, we use laboratory and field data to show that infection of Helicoverpa armigera with a densovirus (HaDV2) is associated with its enhanced growth and tolerance to Bt-cotton. Moreover, field monitoring showed a much higher incidence of cotton bollworm infection with HaDV2 in regions cultivated with Bt-cotton than in regions without it, with the rate of densovirus infection increasing with increasing use of Bt-cotton. RNA-seq suggested tolerance to both baculovirus and Cry1Ac were enhanced via the immune-related pathways. These findings suggest that exposure to Bt-crops has selected for beneficial interactions between the target pest and a mutualistic microorganism that enhances its performance on Bt-crops under field conditions.


Subject(s)
Bacillus thuringiensis , Densovirus , Gossypium , Insecticides , Animals , Bacillus thuringiensis Toxins , Baculoviridae , China , Endotoxins , Hemolysin Proteins , Insecta , Insecticide Resistance , Moths , Plants, Genetically Modified , Symbiosis
8.
Mol Ecol Resour ; 20(6): 1682-1696, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32619331

ABSTRACT

The rapid wide-scale spread of fall armyworm (Spodoptera frugiperda) has caused serious crop losses globally. However, differences in the genetic background of subpopulations and the mechanisms of rapid adaptation behind the invasion are still not well understood. Here we report the assembly of a 390.38-Mb chromosome-level genome of fall armyworm derived from south-central Africa using Pacific Bioscience (PacBio) and Hi-C sequencing technologies, with scaffold N50 of 12.9 Mb and containing 22,260 annotated protein-coding genes. Genome-wide resequencing of 103 samples and strain identification were conducted to reveal the genetic background of fall armyworm populations in China. Analysis of genes related to pesticide- and Bacillus thuringiensis (Bt) resistance showed that the risk of fall armyworm developing resistance to conventional pesticides is very high. Laboratory bioassay results showed that insects invading China carry resistance to organophosphate and pyrethroid pesticides, but are sensitive to genetically modified maize expressing the Bt toxin Cry1Ab in field experiments. Additionally, two mitochondrial fragments were found to be inserted into the nuclear genome, with the insertion event occurring after the differentiation of the two strains. This study represents a valuable advance toward improving management strategies for fall armyworm.


Subject(s)
Hemolysin Proteins , Insecticide Resistance , Spodoptera/genetics , Animals , Bacterial Proteins , China , Endotoxins , Genome, Insect , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , South Africa , Spodoptera/drug effects , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL