Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 623
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(3): e2319335121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38198526

ABSTRACT

The phytohormone cytokinin has various roles in plant development, including meristem maintenance, vascular differentiation, leaf senescence, and regeneration. Prior investigations have revealed that cytokinin acts via a phosphorelay similar to the two-component system by which bacteria sense and respond to external stimuli. The eventual targets of this phosphorelay are type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs), containing the conserved N-terminal receiver domain (RD), middle DNA binding domain (DBD), and C-terminal transactivation domain. While it has been established for two decades that the phosphoryl transfer from a specific histidyl residue in ARABIDOPSIS HIS PHOSPHOTRANSFER PROTEINS (AHPs) to an aspartyl residue in the RD of B-ARRs results in a rapid transcriptional response to cytokinin, the underlying molecular basis remains unclear. In this work, we determine the crystal structures of the RD-DBD of ARR1 (ARR1RD-DBD) as well as the ARR1DBD-DNA complex from Arabidopsis. Analyses of the ARR1DBD-DNA complex have revealed the structural basis for sequence-specific recognition of the GAT trinucleotide by ARR1. In particular, comparing the ARR1RD-DBD and ARR1DBD-DNA structures reveals that unphosphorylated ARR1RD-DBD exists in a closed conformation with extensive contacts between the RD and DBD. In vitro and vivo functional assays have further suggested that phosphorylation of the RD weakens its interaction with DBD, subsequently permits the DNA binding capacity of DBD, and promotes the transcriptional activity of ARR1. Our findings thus provide mechanistic insights into phosphorelay activation of gene transcription in response to cytokinin.


Subject(s)
Arabidopsis , Cytokinins , Transcriptional Activation , Arabidopsis/genetics , Plant Growth Regulators , DNA
2.
EMBO Rep ; 24(3): e55726, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36779365

ABSTRACT

How histone modifications regulate changes in gene expression during preimplantation development in any species remains poorly understood. Using CUT&Tag to overcome limiting amounts of biological material, we profiled two activating (H3K4me3 and H3K27ac) and two repressive (H3K9me3 and H3K27me3) marks in bovine oocytes, 2-, 4-, and 8-cell embryos, morula, blastocysts, inner cell mass, and trophectoderm. In oocytes, broad bivalent domains mark developmental genes, and prior to embryonic genome activation (EGA), H3K9me3 and H3K27me3 co-occupy gene bodies, suggesting a global mechanism for transcription repression. During EGA, chromatin accessibility is established before canonical H3K4me3 and H3K27ac signatures. Embryonic transcription is required for this remodeling, indicating that maternally provided products alone are insufficient for reprogramming. Last, H3K27me3 plays a major role in restriction of cellular potency, as blastocyst lineages are defined by differential polycomb repression and transcription factor activity. Notably, inferred regulators of EGA and blastocyst formation strongly resemble those described in humans, as opposed to mice. These similarities suggest that cattle are a better model than rodents to investigate the molecular basis of human preimplantation development.


Subject(s)
Embryonic Development , Histones , Humans , Cattle , Animals , Mice , Histones/metabolism , Embryonic Development/genetics , Chromatin/metabolism , Blastocyst/metabolism , Chromosomes/metabolism , Gene Expression Regulation, Developmental
3.
Proc Natl Acad Sci U S A ; 119(39): e2205668119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122231

ABSTRACT

Hydrolysis of N2O5 under tropospheric conditions plays a critical role in assessing the fate of O3, OH, and NOx in the atmosphere. However, its removal mechanism has not been fully understood, and little is known about the role of entropy. Herein, we propose a removal path of N2O5 on the water clusters/droplet with the existence of amine, which entails a low free-energy barrier of 4.46 and 3.76 kcal/mol on a water trimer and droplet, respectively, at room temperature. The free-energy barrier exhibits strong temperature dependence; a barrierless hydrolysis process of N2O5 at low temperature (≤150 K) is observed. By coupling constrained ab initio molecular dynamics (constrained AIMD) simulations with thermodynamic integration methods, we quantitively evaluated the entropic contributions to the free energy and compared NH3-, methylamine (MA)-, and dimethylamine (DMA)-promoted hydrolysis of N2O5 on water clusters and droplet. Our results demonstrate that methylation of NH3 stabilizes the product state and promotes hydrolysis of N2O5 by reducing the free-energy barriers. Furthermore, a quantitative analysis of the internal coordinate distribution of the reaction center and the relative position of surrounding species reveals that the significant entropic contribution primarily results from the ensemble effect of configurations observed in the AIMD simulations. Such an ensemble effect becomes more significant with more water molecules included. Lowering the temperature effectively minimizes the entropic contribution, making the hydrolysis more exothermic and barrierless. This study sheds light on the importance of the promoting effect of amines and the entropic effect on gas-phase hydrolysis reactions, which may have far-reaching implications in atmospheric chemistry.


Subject(s)
Amines , Water , Dimethylamines , Hydrolysis , Methylamines , Water/chemistry
4.
Cancer Cell Int ; 24(1): 51, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291456

ABSTRACT

BACKGROUND: Engrailed homeobox 1 (EN1) is a candidate oncogene that is epigenetically modified in salivary adenoid cystic carcinoma (SACC). We investigated the expression of EN1 in SACC tissues and cells, EN1 promoter methylation, and the role of EN1 in tumour progression in SACC. METHODS: Thirty-five SACC samples were screened for key transcription factors that affect tumour progression. In vitro and in vivo assays were performed to determine the viability, tumorigenicity, and metastatic ability of SACC cells with modulated EN1 expression. Quantitative methylation-specific polymerase chain reaction analysis was performed on SACC samples. RESULTS: EN1 was identified as a transcription factor that was highly overexpressed in SACC tissues, regardless of clinical stage and histology subtype, and its level of expression correlated with distant metastasis. EN1 promoted cell invasion and migration through epithelial-mesenchymal transition in vitro and enhanced SACC metastasis to the lung in vivo. RNA-seq combined with in vitro assays indicated that EN1 might play an oncogenic role in SACC through the PI3K-AKT pathway. EN1 mRNA levels were negatively correlated with promoter hypermethylation, and inhibition of DNA methylation by 5-aza-dC increased EN1 expression. CONCLUSIONS: The transcription factor EN1 is overexpressed in SACC under methylation regulation and plays a pivotal role in SACC progression through the PI3K-AKT pathway. These results suggest that EN1 may be a diagnostic biomarker and a potential therapeutic target for SACC.

5.
PLoS Biol ; 19(2): e3001044, 2021 02.
Article in English | MEDLINE | ID: mdl-33529193

ABSTRACT

Evolutionarily conserved microRNAs (miRNAs) usually have high copy numbers in the genome. The redundant and specific roles of each member of a multimember miRNA gene family are poorly understood. Previous studies have shown that the miR156-SPL-miR172 axis constitutes a signaling cascade in regulating plant developmental transitions. Here, we report the feasibility and utility of CRISPR-Cas9 technology to investigate the functions of all 5 MIR172 family members in Arabidopsis. We show that an Arabidopsis plant devoid of miR172 is viable, although it displays pleiotropic morphological defects. MIR172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching, and floral competence. In particular, we find that the miR156-SPL-miR172 cascade is bifurcated into specific flowering responses by matching pairs of coexpressed SPL and MIR172 genes in different tissues. Our results thus highlight the spatiotemporal changes in gene expression that underlie evolutionary novelties of a miRNA gene family in nature. The expansion of MIR172 genes in the Arabidopsis genome provides molecular substrates for the integration of diverse floral inductive cues, which ensures that plants flower at the optimal time to maximize seed yields.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , MicroRNAs/genetics , Arabidopsis/metabolism , CRISPR-Cas Systems , Flowers/genetics , Flowers/growth & development , Gene Editing , Gene Expression Regulation, Plant , Genes, Plant , Plant Development/genetics
6.
Int J Behav Nutr Phys Act ; 21(1): 55, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730407

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the effects of a walking school bus intervention on children's active commuting to school. METHODS: We conducted a randomized controlled trial (RCT) in Houston, Texas (Year 1) and Seattle, Washington (Years 2-4) from 2012 to 2016. The study had a two-arm, cluster randomized design comparing the intervention (walking school bus and education materials) to the control (education materials) over one school year October/November - May/June). Twenty-two schools that served lower income families participated. Outcomes included percentage of days students' active commuting to school (primary, measured via survey) and moderate-to-vigorous physical activity (MVPA, measured via accelerometry). Follow-up took place in May or June. We used linear mixed-effects models to estimate the association between the intervention and outcomes of interest. RESULTS: Total sample was 418 students [Mage=9.2 (SD = 0.9) years; 46% female], 197 (47%) in the intervention group. The intervention group showed a significant increase compared with the control group over time in percentage of days active commuting (ß = 9.04; 95% CI: 1.10, 16.98; p = 0.015) and MVPA minutes/day (ß = 4.31; 95% CI: 0.70, 7.91; p = 0.02). CONCLUSIONS: These findings support implementation of walking school bus programs that are inclusive of school-age children from lower income families to support active commuting to school and improve physical activity. TRAIL REGISTRATION: This RCT is registered at clinicaltrials.gov (NCT01626807).


Subject(s)
Schools , Transportation , Walking , Humans , Walking/statistics & numerical data , Female , Male , Child , Transportation/methods , Health Promotion/methods , Washington , Texas , Students , Exercise , Motor Vehicles , Accelerometry , Poverty , Program Evaluation , Cluster Analysis
7.
Bioorg Med Chem Lett ; 107: 129780, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38714262

ABSTRACT

Oncogenic KRAS mutations drive an approximately 25 % of all human cancers. Son of Sevenless 1 (SOS1), a critical guanine nucleotide exchange factor, catalyzes the activation of KRAS. Targeting SOS1 degradation has engaged as a promising therapeutic strategy for KRAS-mutant cancers. Herein, we designed and synthesized a series of novel CRBN-recruiting SOS1 PROTACs using the pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor as the warhead. One representative compound 11o effectively induced the degradation of SOS1 in three different KRAS-mutant cancer cell lines with DC50 values ranging from 1.85 to 7.53 nM. Mechanism studies demonstrated that 11o-induced SOS1 degradation was dependent on CRBN and proteasome. Moreover, 11o inhibited the phosphorylation of ERK and displayed potent anti-proliferative activities against SW620, A549 and DLD-1 cells. Further optimization of 11o may provide us promising SOS1 degraders with favorable drug-like properties for developing new chemotherapies targeting KRAS-driven cancers.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Design , SOS1 Protein , Humans , SOS1 Protein/metabolism , SOS1 Protein/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Line, Tumor , Molecular Structure , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Proteolysis Targeting Chimera
8.
Dev Med Child Neurol ; 66(1): 52-60, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37340674

ABSTRACT

AIM: To examine whether designed-to-be-rigid ankle-foot orthoses and footwear combinations with individualized alignment and footwear designs (AFO-FC/IAFD) would be more effective than designed-to-be-rigid AFO with non-individualized alignment and footwear designs (AFO-FC/NAFD) in children with cerebral palsy (CP). METHOD: Nineteen children with bilateral spastic CP were randomized to AFO-FC/NAFD (n = 10) or AFO-FC/IAFD (n = 9) groups. Fifteen were male, average age 6 years 11 months (range 4 years 2 months-9 years 11 months), classified in Gross Motor Function Classification System levels II (n = 15) and III (n = 4). The Pediatric Balance Scale (PBS), Gait Outcomes Assessment List (GOAL), Patient-Reported Outcomes Measurement Information System (PROMIS), and Orthotic and Prosthetic Users' Survey (OPUS) measures of satisfaction were collected at baseline and after 3 months' wear. RESULTS: Compared with the AFO-FC/NAFD group, those with AFO-FC/IAFD demonstrated greater change in PBS total scores (mean 12.8 [standard deviation 10.5] vs 3.5 [5.8]; p = 0.03) and GOAL total scores (3.5 [5.8] vs -0.44 [5.5]; p = 0.03). There were no significant changes in OPUS or PROMIS scores. INTERPRETATION: After 3 months, individualized orthosis alignment and footwear designs had a greater positive effect on balance and parent-reported mobility than a non-individualized approach. No effect was documented for the PROMIS and OPUS. Results may inform orthotic management for ambulatory children with bilateral spastic CP. WHAT THIS PAPER ADDS: Balance and parent-reported mobility increased more over time for the ankle-foot orthoses and footwear combinations with individualized alignment and footwear designs (AFO-FC/IAFD) group. Changes in balance over time suggest a therapeutic effect of the AFO-FC/IAFD approach.


Subject(s)
Cerebral Palsy , Foot Orthoses , Gait Disorders, Neurologic , Humans , Male , Child , Infant , Female , Cerebral Palsy/therapy , Muscle Spasticity , Orthotic Devices , Gait , Biomechanical Phenomena
9.
J Clin Periodontol ; 51(5): 652-664, 2024 May.
Article in English | MEDLINE | ID: mdl-38246602

ABSTRACT

AIM: To evaluate the 3- to 8-year outcomes of dental implants placed with lateral sinus floor augmentation (LSFA) and to identify factors affecting implant survival. MATERIALS AND METHODS: This retrospective study was performed by screening all implants placed with LSFA procedures, which were conducted between January 2012 and December 2016. Subantral bone gain (SABG) and apical bone height (ABH) were assessed using panoramic radiographs. The cumulative survival rate of implants was analysed using life-table analysis and Kaplan-Meier survival curves. The influential risk factors affecting survival were assessed using univariate log-rank tests and multivariable mixture cure rate model. Implant complications were recorded. RESULTS: Based on the established criteria, a total of 449 patients (760 implants) were included in this study. In the 3- to 8-year follow-up (mean ± SD, 5.81 ± 1.33 years), 15 implants in 14 patients failed, with a CRS of 96.81% on an implant basis and 95.07% on a patient basis. A history of periodontitis and poor compliance with supportive periodontal treatment was associated with a significantly higher risk of implant failure at both implant and patient levels. Significant decreases in ABH occurred during each yearly interval except for 3 years. A similar trend has been observed for SABG at 1, 2, 6 and 8 years. The total complication rate was 31.84% on implant basis, with peri-implant mucositis (21.58%) being the most frequent biologic complication and porcelain cracking (5.00%) being the most common technical complication. CONCLUSIONS: Implant with LSFA is a reliable treatment option in atrophic maxilla. A history of periodontitis without regular supportive periodontal treatment was identified as a predictor for implant failure. Slight but significant shrinkage of vertically augmented bone can be observed after implant placement.


Subject(s)
Dental Implants , Periodontitis , Sinus Floor Augmentation , Humans , Sinus Floor Augmentation/adverse effects , Sinus Floor Augmentation/methods , Dental Implants/adverse effects , Dental Implantation, Endosseous/adverse effects , Dental Implantation, Endosseous/methods , Retrospective Studies , Bone Transplantation/methods , Maxilla/surgery , Risk Factors , Maxillary Sinus/surgery , Dental Restoration Failure , Treatment Outcome , Follow-Up Studies
10.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38380745

ABSTRACT

Machine learning potentials (MLPs) have attracted significant attention in computational chemistry and materials science due to their high accuracy and computational efficiency. The proper selection of atomic structures is crucial for developing reliable MLPs. Insufficient or redundant atomic structures can impede the training process and potentially result in a poor quality MLP. Here, we propose a local-environment-guided screening algorithm for efficient dataset selection in MLP development. The algorithm utilizes a local environment bank to store unique local environments of atoms. The dissimilarity between a particular local environment and those stored in the bank is evaluated using the Euclidean distance. A new structure is selected only if its local environment is significantly different from those already present in the bank. Consequently, the bank is then updated with all the new local environments found in the selected structure. To demonstrate the effectiveness of our algorithm, we applied it to select structures for a Ge system and a Pd13H2 particle system. The algorithm reduced the training data size by around 80% for both without compromising the performance of the MLP models. We verified that the results were independent of the selection and ordering of the initial structures. We also compared the performance of our method with the farthest point sampling algorithm, and the results show that our algorithm is superior in both robustness and computational efficiency. Furthermore, the generated local environment bank can be continuously updated and can potentially serve as a growing database of feature local environments, aiding in efficient dataset maintenance for constructing accurate MLPs.

11.
Med Sci Monit ; 30: e944193, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38380469

ABSTRACT

The authors have requested retraction due to the identification of errors in the data. Reference: Jiafeng Zhang, Xiaojie Jin, Chuan Zhou, Hui Zhao, Ping He, Yalin Hao, Qiongna Dong. Resveratrol Suppresses Human Nasopharyngeal Carcinoma Cell Growth Via Inhibiting Differentiation Antagonizing Non-Protein Coding RNA (DANCR) Expression. Med Sci Monit, 2020; 26: e923622. DOI: 10.12659/MSM.923622.

12.
BMC Pediatr ; 24(1): 325, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734598

ABSTRACT

BACKGROUND: Cerebrospinal fluid (CSF) shunts allow children with hydrocephalus to survive and avoid brain injury (J Neurosurg 107:345-57, 2007; Childs Nerv Syst 12:192-9, 1996). The Hydrocephalus Clinical Research Network implemented non-randomized quality improvement protocols that were shown to decrease infection rates compared to pre-operative prophylactic intravenous antibiotics alone (standard care): initially with intrathecal (IT) antibiotics between 2007-2009 (J Neurosurg Pediatr 8:22-9, 2011), followed by antibiotic impregnated catheters (AIC) in 2012-2013 (J Neurosurg Pediatr 17:391-6, 2016). No large scale studies have compared infection prevention between the techniques in children. Our objectives were to compare the risk of infection following the use of IT antibiotics, AIC, and standard care during low-risk CSF shunt surgery (i.e., initial CSF shunt placement and revisions) in children. METHODS: A retrospective observational cohort study at 6 tertiary care children's hospitals was conducted using Pediatric Health Information System + (PHIS +) data augmented with manual chart review. The study population included children ≤ 18 years who underwent initial shunt placement between 01/2007 and 12/2012. Infection and subsequent CSF shunt surgery data were collected through 12/2015. Propensity score adjustment for regression analysis was developed based on site, procedure type, and year; surgeon was treated as a random effect. RESULTS: A total of 1723 children underwent initial shunt placement between 2007-2012, with 1371 subsequent shunt revisions and 138 shunt infections. Propensity adjusted regression demonstrated no statistically significant difference in odds of shunt infection between IT antibiotics (OR 1.22, 95% CI 0.82-1.81, p = 0.3) and AICs (OR 0.91, 95% CI 0.56-1.49, p = 0.7) compared to standard care. CONCLUSION: In a large, observational multicenter cohort, IT antibiotics and AICs do not confer a statistically significant risk reduction compared to standard care for pediatric patients undergoing low-risk (i.e., initial or revision) shunt surgeries.


Subject(s)
Anti-Bacterial Agents , Antibiotic Prophylaxis , Cerebrospinal Fluid Shunts , Humans , Cerebrospinal Fluid Shunts/adverse effects , Anti-Bacterial Agents/administration & dosage , Retrospective Studies , Child , Male , Child, Preschool , Female , Infant , Antibiotic Prophylaxis/methods , Adolescent , Injections, Spinal , Hydrocephalus/surgery , Catheters, Indwelling/adverse effects , Surgical Wound Infection/prevention & control , Catheter-Related Infections/prevention & control , Catheters
13.
Angew Chem Int Ed Engl ; 63(28): e202406947, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38650436

ABSTRACT

Supported metal catalysts with appropriate metal-support interactions (MSIs) hold a great promise for heterogeneous catalysis. However, ensuring tight immobilization of metal clusters/nanoparticles on the support while maximizing the exposure of surface active sites remains a huge challenge. Herein, we report an Ir/WO3 catalyst with a new enrooted-type MSI in which Ir clusters are, unprecedentedly, atomically enrooted into the WO3 lattice. The enrooted Ir atoms decrease the electron density of the constructed interface compared to the adhered (root-free) type, thereby achieving appropriate adsorption toward oxygen intermediates, ultimately leading to high activity and stability for oxygen evolution in acidic media. Importantly, this work provides a new enrooted-type supported metal catalyst, which endows suitable MSI and maximizes the exposure of surface active sites in contrast to the conventional adhered, embedded, and encapsulated types.

14.
J Am Chem Soc ; 145(40): 21897-21903, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37766450

ABSTRACT

The identification of appropriate structural genes that influence the active-site configuration for a given reaction is critical for discovering potential catalysts with reduced reaction barriers. In this study, we introduce bulk-phase topology-derived tetrahedral descriptors as a means of expressing a catalyst's "material structural genes". We combine this approach with an interpretable machine learning model to accurately and efficiently predict the effective barrier associated with methane C-H bond cleavage across a wide range of metal oxides (MOs). These structural genes enable high-throughput catalyst screening for low-temperature methane activation and ultimately identify 13 candidate catalysts from a pool of 9095 MOs that are recommended for experimental synthesis. The topology-based method that we describe can also be extended to facilitate high-throughput catalyst screening and design for other dehydrogenation reactions.

15.
EMBO J ; 38(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30842098

ABSTRACT

Heteroblasty refers to a phenomenon that a plant produces morphologically or functionally different lateral organs in an age-dependent manner. In the model plant Arabidopsis thaliana, the production of trichomes (epidermal leaf hairs) on the abaxial (lower) side of leaves is a heteroblastic mark for the juvenile-to-adult transition. Here, we show that the heteroblastic development of abaxial trichomes is regulated by a spatiotemporally regulated complex comprising the leaf abaxial fate determinant (KAN1) and the developmental timer (miR172-targeted AP2-like proteins). We provide evidence that a short-distance chromatin loop brings the downstream enhancer element into close association with the promoter elements of GL1, which encodes a MYB transcription factor essential for trichome initiation. During juvenile phase, the KAN1-AP2 repressive complex binds to the downstream sequence of GL1 and represses its expression through chromatin looping. As plants age, the gradual reduction in AP2-like protein levels leads to decreased amount of the KAN1-AP2 complex, thereby licensing GL1 expression and the abaxial trichome initiation. Our results thus reveal a novel molecular mechanism by which a heteroblastic trait is governed by integrating age and leaf polarity cue in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Leaves/growth & development , Promoter Regions, Genetic , Spatio-Temporal Analysis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , MicroRNAs/genetics , Mutation , Phenotype , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
16.
J Clin Immunol ; 43(6): 1468-1477, 2023 08.
Article in English | MEDLINE | ID: mdl-37219739

ABSTRACT

PURPOSE: To understand the natural history and clinical outcomes for patients with X-linked agammaglobulinemia (XLA) in the United States utilizing the United States Immunodeficiency Network (USIDNET) patient registry. METHODS: The USIDNET registry was queried for data from XLA patients collected from 1981 to 2019. Data fields included demographics, clinical features before and after diagnosis of XLA, family history, genetic mutation in Bruton's tyrosine kinase (BTK), laboratory findings, treatment modalities, and mortality. RESULTS: Data compiled through the USIDNET registry on 240 patients were analyzed. Patient year of birth ranged from 1945 to 2017. Living status was available for 178 patients; 158/178 (88.8%) were alive. Race was reported for 204 patients as follows: White, 148 (72.5%); Black/African American, 23 (11.2%); Hispanic, 20 (9.8%); Asian or Pacific Islander, 6 (2.9%), and other or more than one race, 7 (3.4%). The median age at last entry, age at disease onset, age at diagnosis, and length of time with XLA diagnosis was 15 [range (r) = 1-52 years], 0.8 [r = birth-22.3 years], 2 [r = birth-29 years], and 10 [r = 1-56 years] years respectively. One hundred and forty-one patients (58.7%) were < 18 years of age. Two hundred and twenty-one (92%) patients were receiving IgG replacement (IgGR), 58 (24%) were on prophylactic antibiotics, and 19 (7.9%) were on immunomodulatory drugs. Eighty-six (35.9%) patients had undergone surgical procedures, two had undergone hematopoietic cell transplantation, and two required liver transplantation. The respiratory tract was the most affected organ system (51.2% of patients) followed by gastrointestinal (40%), neurological (35.4%), and musculoskeletal (28.3%). Infections were common both before and after diagnosis, despite IgGR therapy. Bacteremia/sepsis and meningitis were reported more frequently before XLA diagnosis while encephalitis was more commonly reported after diagnosis. Twenty patients had died (11.2%). The median age of death was 21 years (range = 3-56.7 years). Neurologic condition was the most common underlying co-morbidity for those XLA patients who died. CONCLUSIONS: Current therapies for XLA patients reduce early mortality, but patients continue to experience complications that impact organ function. With improved life expectancy, more efforts will be required to improve post-diagnosis organ dysfunction and quality of life. Neurologic manifestations are an important co-morbidity associated with mortality and not yet clearly fully understood.


Subject(s)
Agammaglobulinemia , Genetic Diseases, X-Linked , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Quality of Life , Agammaglobulinaemia Tyrosine Kinase/genetics , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/epidemiology , Genetic Diseases, X-Linked/genetics , Agammaglobulinemia/diagnosis , Agammaglobulinemia/epidemiology , Agammaglobulinemia/therapy , Mutation/genetics
17.
Small ; 19(28): e2300849, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36988005

ABSTRACT

High-concentrated non-flammable electrolytes (HCNFE) in lithium metal batteries prevent thermal runaway accidents, but the microstructure of their solid electrolyte interphase (SEI) remains largely unexplored, due to the lack of direct imaging tools. Herein, cryo-HRTEM is applied to directly visualize the native state of SEI at the atomic scale. In HCNFE, SEI has a uniform laminated crystalline-amorphous structure that can prevent further reaction between the electrolyte and lithium. The inorganic SEI component, Li2 S2 O7 , is precisely identified by cryo-HRTEM. Density functional theory (DFT) calculations demonstrate that the final Li2 S2 O7 phase has suitable natural transmission channels for Li-ion diffusion and excellent ionic conductivity of 1.2 × 10-5 S cm-1 .

18.
PLoS Pathog ; 17(11): e1010070, 2021 11.
Article in English | MEDLINE | ID: mdl-34788350

ABSTRACT

Nuclear scaffold attachment factor A (SAFA) is a novel RNA sensor involved in sensing viral RNA in the nucleus and mediating antiviral immunity. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS with a high fatality rate of up to 30%. It remains elusive whether and how cytoplasmic SFTSV can be sensed by the RNA sensor SAFA. Here, we demonstrated that SAFA was able to detect SFTSV infection and mediate antiviral interferon and inflammatory responses. Transcription and expression levels of SAFA were strikingly upregulated under SFTSV infection. SAFA was retained in the cytoplasm by interaction with SFTSV nucleocapsid protein (NP). Importantly, SFTSV genomic RNA was recognized by cytoplasmic SAFA, which recruited and promoted activation of the STING-TBK1 signaling axis against SFTSV infection. Of note, the nuclear localization signal (NLS) domain of SAFA was important for interaction with SFTSV NP and recognition of SFTSV RNA in the cytoplasm. In conclusion, our study reveals a novel antiviral mechanism in which SAFA functions as a novel cytoplasmic RNA sensor that directly recognizes RNA virus SFTSV and mediates an antiviral response.


Subject(s)
Antiviral Agents/metabolism , Bunyaviridae Infections/immunology , Cytoplasm/immunology , Immunity, Innate/immunology , Nuclear Matrix-Associated Proteins/metabolism , Phlebovirus/immunology , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology , Cytoplasm/virology , HEK293 Cells , Host-Pathogen Interactions , Humans , Nuclear Matrix-Associated Proteins/genetics
19.
J Pediatr ; 258: 113415, 2023 07.
Article in English | MEDLINE | ID: mdl-37028752

ABSTRACT

OBJECTIVE: To identify sociodemographic factors associated with pediatric clinical ethics consultation (CEC). STUDY DESIGN: Matched, case-control study at a single center, tertiary pediatric hospital in the Pacific Northwest. Cases (patients hospitalized January 2008-December 2019 with CEC) were compared with controls (those without CEC). We determined the association of the outcome (CEC receipt) with exposures (race/ethnicity, insurance status, and language for care) using univariate and multivariable conditional logistic regression. RESULTS: Of 209 cases and 836 matched controls, most cases identified as white (42%), had public/no insurance (66%), and were English-speaking (81%); most controls identified as white (53%), had private insurance (54%), and were English-speaking (90%). In univariate analysis, patients identifying as Black (OR: 2.79, 95% CI: 1.57, 4.95; P < .001), Hispanic (OR: 1.92, 95% CI: 1.24, 2.97; P = .003), with public/no insurance (OR: 2.21, 95% CI: 1.58, 3.10; P < .001), and using Spanish language for care (OR: 2.52, 95% CI: 1.47, 4.32; P < .001) had significantly increased odds of CEC, compared with patients identifying as white, using private insurance, and using English for care, respectively. In multivariable regression, Black race (adjusted OR: 2.12, 95% CI: 1.16, 3.87; P = .014) and public/no insurance (adjusted OR: 1.81, 95% CI: 1.22, 2.68; P = .003) remained significantly associated with receipt of CEC. CONCLUSIONS: We found disparities in receipt of CEC by race and insurance status. Further study is needed to determine the causes of these disparities.


Subject(s)
Child, Hospitalized , Ethics Consultation , Healthcare Disparities , Child , Humans , Case-Control Studies , Ethnicity , Hispanic or Latino , Retrospective Studies , White , Black or African American
20.
Plant Cell ; 32(1): 226-241, 2020 01.
Article in English | MEDLINE | ID: mdl-31649122

ABSTRACT

Age and wounding are two major determinants for regeneration. In plants, the root regeneration is triggered by wound-induced auxin biosynthesis. As plants age, the root regenerative capacity gradually decreases. How wounding leads to the auxin burst and how age and wound signals collaboratively regulate root regenerative capacity are poorly understood. Here, we show that the increased levels of three closely-related miR156-targeted Arabidopsis (Arabidopsis thaliana) SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, SPL2, SPL10, and SPL11, suppress root regeneration with age by inhibiting wound-induced auxin biosynthesis. Mechanistically, we find that a subset of APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors including ABSCISIC ACID REPRESSOR1 and ERF109 is rapidly induced by wounding and serves as a proxy for wound signal to induce auxin biosynthesis. In older plants, SPL2/10/11 directly bind to the promoters of AP2/ERFs and attenuates their induction, thereby dampening auxin accumulation at the wound. Our results thus identify AP2/ERFs as a hub for integration of age and wound signal for root regeneration.


Subject(s)
Arabidopsis Proteins/metabolism , Ethylenes/metabolism , Homeodomain Proteins/metabolism , Plant Roots/growth & development , Regeneration/physiology , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Indoleacetic Acids/metabolism , MicroRNAs/metabolism , Nuclear Proteins , Promoter Regions, Genetic , Regeneration/genetics , Repressor Proteins , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL