Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Immunol ; 207(1): 200-209, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34162722

ABSTRACT

Melanization and encapsulation are prominent defense responses against microbes detected by pattern recognition receptors of their host insects. In the ghost moth Thitarodes xiaojinensis, an activated immune system can melanize and encapsulate the fungus Cordyceps militaris However, these responses were hardly detected in the host hemolymph postinfection of another fungus Ophiocordyceps sinensis The immune interaction between O. sinensis and the host remains largely unknown, which hinders the artificial cultivation of Chinese cordyceps. We found that T. xiaojinensis ß-1,3-glucan recognition protein-1 (ßGRP1) was needed for prophenoloxidase activation induced by C. militaris Failure of ßGRP1 to recognize O. sinensis is a primary reason for the lack of melanization in the infected host. Lyticase or snailase treatment combined with binding and immunofluorescence detection showed the existence of a protective layer preventing the fungus from ßGRP1 recognition. Coimmunoprecipitation and mass spectrometry analysis indicated that ßGRP1 interacted with immulectin-8 (IML8) via binding to C. militaris IML8 promotes encapsulation. This study suggests the roles of T. xiaojinensis ßGRP1 and IML8 in modulating immune responses against C. militaris Most importantly, the data indicate that O. sinensis may evade melanization by preventing ßGRP1 recognition.


Subject(s)
Cordyceps/immunology , Insect Proteins/immunology , Moths/immunology , Animals , Moths/microbiology
2.
Insect Sci ; 26(3): 453-465, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29274206

ABSTRACT

Insects have a large family of C-type lectins involved in cell adhesion, pathogen recognition and activation of immune responses. In this study, 32 transcripts encoding C-type lectin domain proteins (CTLDPs) were identified from the Thitarodes xiaojinensis transcriptome. According to their domain structures, six CTLDPs with one carbohydrate-recognition domain (CRD) were classified into the CTL-S subfamily. The other 23 CTLDPs with two CRDs were grouped into the immulectin (IML) subfamily. The remaining three with extra regulatory domains were sorted into the CTL-X subfamily. Phylogenetic analysis showed that CTL-S and CTL-X members from different insects could form orthologous groups. In contrast, no T. xiaojinensis IML orthologues were found in other insects. Remarkable lineage-specific expansion in this subfamily was observed reflecting that these CTLDPs, as important receptors, have evolved diversified members in response to a variety of microbes. Prediction of binding ligands revealed that T. xiaojinensis, a cold-adapted species, conserved the ability of CRDs to combine with Ca2+ to keep its receptors from freezing. Comparative analysis of induction of CTLDP genes after different immune challenges indicated that IMLs might play critical roles in immune defenses. This study examined T. xiaojinensis CTLDPs and provides a basis for further studies of their characteristics.


Subject(s)
Insect Proteins/genetics , Moths/genetics , Phylogeny , Animals , Fat Body/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Lectins, C-Type/metabolism , Moths/immunology , Moths/metabolism , Protein Conformation
3.
Insect Sci ; 26(4): 695-710, 2019 Aug.
Article in English | MEDLINE | ID: mdl-29790270

ABSTRACT

Ghost moths inhabiting the alpine meadows of the Tibetan Plateau are cold-adapted stenothermal organisms that are susceptible to heat (dead within 7 days at 27 °C exposure). Exploring the metabolic basis of their heat susceptibility would extend our understanding of the thermal biology of alpine-dwelling invertebrates. Here, gas chromatography-mass spectrometry-based metabolomics was combined with physiological and transcriptional approaches to determine the metabolic mechanisms of heat susceptibility in Thitarodes xiaojinensis larvae. The metabolomics results showed that 27 °C heat stress impaired the Krebs cycle and lipolysis in T. xiaojinensis larvae, as demonstrated by the accumulation of intermediary metabolites. In addition, carbohydrate reserves were highly and exclusively consumed, and an anaerobic product, lactate, accumulated. This evidence suggested a strong reliance on glycolysis to anaerobically generate energy. The respiration rate and enzymatic activity test results indicated a deficiency in O2 metabolism; in addition, the Krebs cycle capacity was not decreased, and the metabolic flux through aerobic pathways was limited. These findings were further supported by the occurrence of hypoxia symptoms in midgut mitochondria (vacuolation and swelling) and increased transcription of hypoxia-induced factor 1-α. Overall, heat stress caused O2 limitation and depressed the overall intensity of aerobic metabolism in ghost moths, and less efficient anaerobic glycolysis was activated to sustain their energy supply. As carbohydrates were depleted, the energy supply became deficient. Our study presents a comprehensive metabolic explanation for the heat susceptibility of ghost moths and reveals the relationship between O2 metabolism and heat susceptibility in these larvae.


Subject(s)
Hot Temperature , Metabolome , Moths/metabolism , Oxygen/metabolism , Stress, Physiological , Animals , Larva/metabolism , Larva/ultrastructure , Metabolomics , Moths/ultrastructure
4.
Insect Biochem Mol Biol ; 64: 1-15, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26165779

ABSTRACT

Hepialus xiaojinensis is an economically important species of Lepidopteran insect. The fungus Ophiocordyceps sinensis can infect its larvae, which leads to mummification after 5-12 months, providing a valuable system with which to study interactions between the insect hosts and pathogenic fungi. However, little sequence information is available for this insect. A time-course analysis of the fat body transcriptome was performed to explore the host immune response to O. sinensis infection. In total, 50,164 unigenes were obtained by assembling the reads from two high-throughput approaches: 454 pyrosequencing and Illumina Hiseq2000. Hierarchical clustering and functional examination revealed four major gene clusters. Clusters 1-3 included transcripts markedly induced by the fungal infection within 72 h. Cluster 4, with a lower number of transcripts, was suppressed during the early phase of infection but returned to normal expression levels sometime before 1 year. Based on sequence similarity to orthologs known to participate in immune defenses, 258 candidate immunity-related transcripts were identified, and their functions were hypothesized. The genes were more primitive than those in other Lepidopteran insects. In addition, lineage-specific family expansion of the clip-domain serine proteases and C-type lectins were apparent and likely caused by selection pressures. Global expression profiles of immunity-related genes indicated that H. xiaojinensis was capable of a rapid response to an O. sinensis challenge; however, the larvae developed tolerance to the fungus after prolonged infection, probably due to immune suppression. Specifically, antimicrobial peptide mRNAs could not be detected after chronic infection, because key components of the Toll pathway (MyD88, Pelle and Cactus) were downregulated. Taken together, this study provides insights into the defense system of H. xiaojinensis, and a basis for understanding the molecular aspects of the interaction between the host and the entomopathogen.


Subject(s)
Hypocreales/physiology , Moths/metabolism , Moths/microbiology , Transcriptome , Animals , Fat Body/metabolism , Gene Expression Regulation , Immunity, Innate , Larva/genetics , Larva/immunology , Larva/microbiology , Lectins, C-Type/metabolism , Moths/immunology , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL