Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Fish Shellfish Immunol ; 145: 109355, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38168634

ABSTRACT

The scavenger receptor class B family proteins (SRB) are multiligand membrane receptor proteins. Herein, a novel SRB homolog (Pt-SRB2) was identified in Portunus trituberculatus. The open reading frame of Pt-SRB2 was predicted to encode 520 amino acid residues comprising a typical CD36 domain. Phylogenetic analysis showed that Pt-SRB2 distinctly clustered with the SRB homologs of most crustaceans and Drosophila but was separate from all vertebrate CD36/SRB. Semi-quantitative and Real-time quantitative PCR revealed that the abundance of Pt-SRB2 transcripts was the highest in hepatopancreas than in other tested tissues. Overexpressed Pt-SRB2 was distributed primarily in the cell membrane and cytoplasm of HEK293T or Drosophila Schneider 2 cells. In crab hemocytes, Pt-SRB2 was distributed primarily in the cell membrane by immunofluorescence staining. In addition, the immunofluorescence staining showed that green fluorescence signals were mainly located in the inner lumen membrane of the hepatopancreatic tubules. Moreover, solid-phase enzyme-linked immunosorbent assay revealed that rPt-SRB2-L exhibited relative high affinity with lipopolysaccharides, and relative moderate binding affinity with lipoteichoic acid or peptidoglycan. Of note, rPt-SRB2-L showed high binding affinity with eicosapentaenoic acid among a series of long-chain polyunsaturated fatty acids. Taken together, this study provided valuable data for understanding the functions of the crab CD36/SRB.


Subject(s)
Brachyura , CD36 Antigens , Humans , Animals , CD36 Antigens/genetics , Brachyura/genetics , Amino Acid Sequence , Base Sequence , Phylogeny , HEK293 Cells , Drosophila/metabolism
2.
J Fish Dis ; 47(3): e13896, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38054569

ABSTRACT

Nocardia seriolae is the primary aetiological agent of nocardiosis in fish, which causes mass mortality in freshwater and marine fish. ß-ketoacyl-ACP synthase (KAS) is one of the essential enzymes in the synthesis of mycolic acids (MASs) in Mycobacterium spp. and has been chosen as the target for therapeutic intervention in mycobacterial diseases. In the present study, a kasB homologue gene (kasB) was identified in the genome of N. seriolae, and the gene-deficient mutant (ΔkasB) was generated based on a clinical isolate, XSYC-Ns. Compared to the wild-type (WT) strain, the ΔkasB showed a measurably growth defect in vitro but retained the acid-fastness in acid-fast staining. Observation of the cell ultrastructure showed some alterations in the cell wall of the ΔkasB strain. Compared to its original strain, the cell wall lipid layer seemed sparser, and a wider electron-transparent zone was observed in the cell wall of ΔkasB strain. Moreover, the ΔkasB strain showed impaired ability of cell invasion as well as intracellular survival in the cell line originating from the head-kidney of the large yellow croaker (LYC-hK), compared to its original strain. In addition, the deficiency of ΔkasB significantly attenuated the virulence of N. seriolae in largemouth bass. The present study suggested that the ΔkasB gene might be involved in the synthesis of extracellular cell-wall lipids in N. seriolae and play a crucial role in its pathogenicity.


Subject(s)
Bass , Fish Diseases , Nocardia Infections , Nocardia , Animals , Virulence/genetics , Fish Diseases/microbiology , Nocardia/genetics , Nocardia Infections/veterinary , Nocardia Infections/microbiology
3.
Fish Shellfish Immunol ; 143: 109209, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944682

ABSTRACT

Galectins, as members of lectin families, exhibit a high affinity for ß-galactosides and play diverse roles in biological processes. They function as pattern recognition receptors (PRRs) with important roles in immune defense. In this study, galectin-1, designated as SpGal-1, was identified and characterized from silver pomfret (Pampus argenteus). The SpGal-1 comprises an open reading frame (ORF) spanning 396 base pairs (bp) and encodes a deduced amino acid (aa) sequence containing a single carbohydrate recognition domain (CRD). Sublocalization analysis revealed that SpGal-1 was mainly expressed in the cytoplasm. The mRNA transcripts of SpGal-1 were ubiquitously detected in various tissues, with a higher expression level in the intestine. In addition, when exposed to Photobacterium damselae subsp. damselae (PDD) infection, both the liver and head kidney exhibited significantly increased SpGal-1 mRNA expression. The recombinant protein of SpGal-1 (named as rSpGal-1) demonstrated hemagglutination against red blood cells (RBCs) from Larimichthys crocea and P. argenteus in a Ca2+ or ß-Mercaptoethanol (ß-ME)-independent manner. Notably, rSpGal-1 could bind with various pathogen-associated molecular patterns (PAMPs) including D-galactose, D-mannose, lipopolysaccharide (LPS), and peptidoglycan (PGN), with highest affinity to PGN. Moreover, rSpGal-1 effectively interacted with an array of bacterial types encompassing Gram-positive bacteria (Staphylococcus aureus and Nocardia seriolae) and Gram-negative bacteria (PDD and Escherichia coli, among others), with the most robust binding affinity towards PDD. Collectively, these findings highlight that SpGal-1 is a crucial PRR with involvement in the host immune defense of silver pomfret.


Subject(s)
Galectin 1 , Gene Expression Regulation , Humans , Animals , Galectin 1/genetics , Immunity, Innate/genetics , Base Sequence , RNA, Messenger/genetics , RNA, Messenger/metabolism , Phylogeny
4.
Fish Shellfish Immunol ; 141: 109071, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37703936

ABSTRACT

Toll-like receptors (TLRs) are vital pattern recognition receptors that play a critical role in the innate immune response against pathogenic attack. Among the bacteria commonly found in the culture process of silver pomfret, Photobacterium damselae subsp. Damselae (PDD, gram-negative) and Nocardia seriolae (NS, gram-positive), can cause large-scale mortality in this fish species. However, there is currently no research on the role of TLRs in mediating the immune response of silver pomfret to these two bacterial infections. Therefore, in this study, we identified nine PaTLRs family members, including several fish-specific TLRs (TLR14 and TLR21). Phylogenetic analysis revealed that these PaTLRs genes could be classified into five subfamilies, namely TLR1, TLR3, TLR5, TLR7, and TLR11, indicating their evolutionary conservation. To further explore the interactions of TLR genes with immune-related mediators, protein and protein interaction network (PPI) results were generated to explain the association of TLR genes with TNF receptor-associated factor 6 (TRAF6) and other relevant genes in the MyD88-dependent pathway and NF-κb signaling pathway. Subsequently, RT-qPCR was conducted to verify the expression patterns of the nine TLR genes in the gills, skin, kidney, liver, and spleen of healthy fish, with most of the TLRs showing high expression levels in the spleen. Following infection with PDD and NS, these PaTLRs exhibited different expression patterns in the spleen, with PaTLR2, PaTLR3, PaTLR5, PaTLR7, PaTLR9, and PaTLR14 being significantly up-regulated. Furthermore, when spleen cells were treated with bacterial compositions, the majority of PaTLRs expression was up-regulated in response to Lipopolysaccharide (LPS) and lipophosphorylcholic acid (LTA) treatment, except for PaTLR21. Finally, changes in the expression levels of TLR-interacting genes were also observed under the stimulation of bacteria and bacterial compositions. The results of this study provide a preliminary reference for further understanding the mechanism of the innate immune response of the TLR gene family in silver pomfret and offer theoretical support for addressing the disease problems encountered during large-scale fish breeding.


Subject(s)
Fish Diseases , Perciformes , Animals , Phylogeny , Toll-Like Receptors , Photobacterium , Immunity, Innate/genetics
5.
J Fish Dis ; 46(3): 181-188, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36453691

ABSTRACT

Copper alloy sheets have been shown to prevent cryptocaryoniasis. Therefore, we studied the potential efficiency of copper alloy mesh (CAM) in aquaculture tanks to prevent cryptocaryoniasis outbreaks. The effectivenesses of CAM against the tomont stage of Cryptocaryon irritans and in protecting fish from cryptocaryoniasis were tested both in vitro and in vivo. The mortality rate of C. irritans tomonts increased as the contact time with CAM rose and peaked at 70 min (100% of mortality). Morphological changes were observed such as the shrinking of the protoplasm of the treated tomonts, resulting in a larger gap between the cytoplasm and the cyst wall. Mitochondrial dysfunction due to shrinkage in the inner portion, outer and inner mitochondrial membrane damage and cytoplasmic vacuolation was revealed by ultrastructural analysis. The use of CAM effectively preventing reinfection was also provided. In comparison with group B (infected fish without CAM), both groups A (uninfected fish as a control group) and C (infected fish treated with CAM) had a 100% survival rate until the end of the trial. CAM has the same anticryptocaryoniasis effect as copper alloy sheets but is more advantageous due to its lightweight, reduced labor cost and lower purchase cost. It is noticeable that CAM exposure also prevents the excessive accumulation of copper ions in aquaculture sea water.


Subject(s)
Anti-Infective Agents , Ciliophora Infections , Ciliophora , Fish Diseases , Hymenostomatida , Perciformes , Animals , Ciliophora Infections/parasitology , Antiparasitic Agents , Copper , Alloys , Surgical Mesh , Fish Diseases/parasitology , Aquaculture , Fishes , Perciformes/parasitology
6.
J Fish Dis ; 46(3): 229-238, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36484113

ABSTRACT

Pseudomonas plecoglossicida is an important pathogenic bacterium in aquaculture that causes visceral granulomas in large yellow croaker (Larimichthys crocea). Uridine diphosphate glucose phosphorylase encoded by galU plays a key role in biosynthesis of the bacterial envelope, particularly lipopolysaccharide and the capsule. In this study, we inactivated the galU gene in the P. plecoglossicida isolate XSDHY-P. The galU mutant strain showed impaired growth in the early exponential stage and lacked the O polysaccharide side chain in lipopolysaccharide, but almost no defect in biofilm formation was detected. The galU mutant strain also exhibited significantly more sensitivity to the bactericidal action of normal fish serum mediated by the complement system compared to the wild-type strain. In a cell model originating from the head kidney of large yellow croaker, the galU mutant strain showed lower capacities of adhesion, invasion, and intracellular survival compared to the wild-type strain. In addition, the deficiency of the galU mutant drastically decreased bacterial loads in tissues and attenuated P. plecoglossicida virulence in fish. These results suggest that the galU gene of P. plecoglossicida is required for in vivo survival in large yellow croaker.


Subject(s)
Fish Diseases , Perciformes , Pseudomonas Infections , Animals , Pseudomonas Infections/microbiology , Lipopolysaccharides , Fish Diseases/microbiology , Perciformes/microbiology
7.
Parasitol Res ; 122(2): 509-517, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36526927

ABSTRACT

Encystment is crucial for defense and reproduction in Cryptocaryon irritans. Therefore, understanding the encystment-related events in the protomont stage can help prevent and control C. irritans. Autophagy promotes protozoan parasite encystation. However, 3MA can inhibit autophagy. In this study, the effects of autophagy inhibition on encystation, survival rate, ultrastructural features, and metabolomic profiles of C. irritans, were evaluated using protomonts treated with 3MA (20 mM). The treatment with 3MA for about 4 h significantly lowered survival and encystation rates of protomonts to about 86.44% and 76.08%, respectively. Microstructural observations showed that the 3MA-treated protomonts showed deformed cell membranes and the cytoplasmic content spill. Furthermore, observation of the ultrastructure of 3MA-treated protomonts showed the destruction of organelles (Golgi bodies and mucocyst) and a lack of autophagosomes. However, no abnormality was observed in the control experiments. Furthermore, the metabolic analysis revealed suppression of metabolites, such as lipids, amino acids, and carbohydrates. These results demonstrate that 3MA can inhibit autophagy in C. irritans, thus hindering encystation, suppressing the metabolism of metabolites, and altering morphological ultrastructure in these parasites.


Subject(s)
Ciliophora Infections , Ciliophora , Fish Diseases , Hymenostomatida , Perciformes , Animals , Ciliophora/physiology , Ciliophora Infections/parasitology , Perciformes/parasitology , Autophagy , Fish Diseases/parasitology
8.
Parasitol Res ; 123(1): 13, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060025

ABSTRACT

Mesanophrys sp. is a parasitic ciliate that invades and destroys the hemocytes of the swimming crab (Portunus trituberculatus). In the present study, we employed an in vitro model to elucidate how Mesanophrys sp. destroys crab hemocytes. We also evaluated the relationship between the parasite's density, the destruction rate of the hemocytes, and the rapid proliferation pattern of parasites in host crabs. We found that the survival rate and cell integrity of crab hemocytes decreased with an increase in Mesanophrys sp. density, depicting a negative correlation between hemocyte viability and parasite density. Further analyses revealed that crab hemocytes could resist destruction by a low density (10 ind/mL) of Mesanophrys sp. for a long time (60 h). Mesanophrys sp. and its culture medium (containing the ciliate secretions) destroy the host hemocytes. The natural population growth rate of Mesanophrys sp. decreased with an increase in the parasite density, but the Mesanophrys sp. density did not affect the generation time of the parasites. In summary, Mesanophrys sp. can destroy crab hemocytes, and the degree of destruction is directly proportional to the parasite density. The resistance of crab hemocytes to Mesanophrys sp. decreased gradually with an increase in the parasite density.


Subject(s)
Brachyura , Ciliophora , Oligohymenophorea , Parasites , Animals , Brachyura/parasitology , Hemocytes , Swimming , Virulence , Host-Parasite Interactions
9.
Fish Shellfish Immunol ; 121: 245-253, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35031475

ABSTRACT

The immune deficiency (IMD) pathway is involved in both antiviral and antibacterial immune responses in Drosophila. IMD protein is the key adaptor to link the extracellular signal and the intracellular reaction to initiate the signal transduction in IMD pathway. In present study, the cDNA of the IMD (Pt-IMD) was identified from a marine crab, Portunus trituberculatus. The Pt-IMD is predicted to encode 170 amino acids with a death domain. Real-Time quantitative PCR analysis showed that Pt-IMD was constitutively expressed in hemocytes, intestine, gill, heart, muscle and hepatopancreas in normal crab. Moreover, the transcript of Pt-IMD in large-granule hemocytes is approximately 6-fold higher than semi-granular cells and agranular cells. Intracellular localization showed Pt-IMD was distributed mainly in the cytoplasm when it was over-expressed in Drosophila Schneider 2 (S2) cell. Functionally, over-expression of Pt-IMD could activate the promoters of Drosophila antimicrobial peptide genes (AMPs) in S2 cell. Furthermore, Pt-IMD expression was also knock-down by RNAi to determine the function of Pt-IMD on regulation of the expression of different antimicrobial peptides (AMPs) in crab. In the primary cultured hemocytes challenged with or without Vibrio alginolyticus, after Pt-IMD was knocked-down by specific long double strand RNA, the expression of anti-lipopolysaccharide factor1 (ALF1), ALF3, crustin1, crustin3, arasin2, hyastatin1and hyastatin3 have been significantly inhibited in normal cell or bacterial infected cell, while the expression of lysozyme was normal in non-infected cells and was significantly induced in bacterial infected cells, which compared to the non-specific dsRNA treated cells.


Subject(s)
Brachyura , Immunity, Innate , Animals , Brachyura/genetics , Brachyura/immunology , Drosophila , Phylogeny , Signal Transduction
10.
Fish Shellfish Immunol ; 131: 342-348, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36243271

ABSTRACT

Silver pomfret has been widely cultured in China due to its high economic value. Photobacterium damselae subsp. damselae (PDD) is a Gram-negative bacterium that has been shown to infect many fish species. To increase knowledge of the molecular mechanisms of the host defense against PDD, we conducted transcriptome analysis of head kidney in silver pomfret at 24 h and 72 h post-infection (hpi) via Illumina sequencing. The de novo assembly resulted in the identification of 79,063 unigenes, with 59,386 (75.11%) successfully annotated in public databases (NR, NT, KO, Swiss-Prot, Pfam, GO, and KOG databases). Comparison of gene expression profiles between PBS-injected fish (sham control) and PDD-challenged fish revealed 329 and 570 differentially expressed genes (DEGs) were screened at 24 hpi and 72 hpi, respectively. The DEGs were enriched in multiple immune-related pathways such as Hepatitis C, Gastric acid secretion, CAMs and Leukocyte transendothelial migration pathways, Primary immunodeficieny, ECM-receptor interaction, PI3K-Akt signaling pathway. The data obtained in the present study offers valuable information for acute immune response of silver pomfret challenged with PDD, which will facilitate further investigations on strategies against Photobacterium spp. infection in teleosts.


Subject(s)
Fish Diseases , Perciformes , Animals , Photobacterium/physiology , Phosphatidylinositol 3-Kinases/genetics , Gene Expression Profiling/veterinary , Fishes/genetics , Transcriptome
11.
J Clin Pharm Ther ; 47(7): 1020-1027, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35285526

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Sulbactam and sulbactam-containing ß-lactam antibiotics are often used in the treatment of Acinetobacter baumannii. We aimed to further examine the clinical efficacy of a cefoperazone/sulbactam anti-infective regimen in multidrug-resistant A. baumannii (MDRAB) lung infections. METHODS: We conducted a retrospective analysis among patients with MDRAB lung infection and complete data who were treated at the geriatric intensive care unit of Jiangsu Province Hospital from January 2018 to December 2020. We collected general information, including age, sex, APACHE II score, anti-infective course, comorbid infections in other sites, other pathogens, cefoperazone/sulbactam regimen and concomitant medications, and adverse reactions. We used microbiological changes before and after treatment to assess microbiological efficacy, defined as microbial eradication and reduction. RESULTS AND DISCUSSION: 121 patients were included, among which 96 (79.34%) were men and 25 (20.66%) were women. The median age was 76 (interquartile range [IQR] 62.5-83) years, median APACHE II score was 22 (IQR 19-26), and median treatment course was 8 (IQR 5-12.5) days. Among these patients, tigecycline was concomitantly used in 52 patients and the sulbactam dose was increased to 4 g and above in 27 patients. The microbiological efficacy of conventional cefoperazone/sulbactam with/without tigecycline in MDRAB decreased with each consecutive year and a reduction in efficacy was linearly correlated with year, which was both statistically significant (p = 0.039, 0.030, respectively). In 2020, the microbiological efficacy of a higher sulbactam dose combined with tigecycline was 75%, which was a significant improvement over the conventional dose (p = 0.028). The 3-year data showed that the microbiological efficacy of conventional cefoperazone/sulbactam 3 g eight hourly (q8h) without tigecycline was 32% and efficacy increased to 57.9% when the sulbactam dose was increased. Hence, the increased sulbactam dose significantly improved efficacy in MDRAB lung infection (p = 0.049). Different doses of sulbactam combined with tigecycline increased the microbiological efficacy of MDRAB but the differences were not statistically significant. WHAT IS NEW AND CONCLUSION: A cefoperazone/sulbactam-based anti-infective regimen showed some efficacy in MDRAB lung infection, but the microbiological efficacy of a cefoperazone/sulbactam 3 g q8h regimen decreased over time. Increasing the sulbactam dose to 4 g or more can improve efficacy. Minimum inhibitory concentration (MIC)-guided personalized medicine may be a future research direction.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cefoperazone/pharmacology , Cefoperazone/therapeutic use , Drug Resistance, Multiple, Bacterial , Female , Humans , Lung , Male , Microbial Sensitivity Tests , Middle Aged , Retrospective Studies , Sulbactam/pharmacology , Sulbactam/therapeutic use , Tigecycline/therapeutic use , Treatment Outcome
12.
Fish Shellfish Immunol ; 114: 28-35, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33848639

ABSTRACT

ß-1,3-glucans, natural polysaccharide groups, exert immunomodulatory effects to improve the innate response and disease resistance in aquatic species and mammals. However, this ß-glucan stimulant is yet to be assayed in swimming crab (Portunus trituberculatus) hemocytes. In this study, we explored the immunomodulatory effect of ß-1,3-glucans (derived from Euglena gracilis) via in vitro 24 h stimulation assays in swimming crab hemocytes. We found that this algal ß-1,3-glucans in crab hemocytes significantly elevated cellular enzymes related parameters, including phenoloxidase (PO), lysozyme, acid phosphatase (ACP) activities, and superoxide anion generation (O2-) rate both at intracellular (P < 0.05) and extracellular (P < 0.05) levels. Besides, alkaline phosphatase (AKP) in hemocytes exhibited no significant differences across the groups (P > 0.05). ß-glucan significantly influenced (P < 0.05) the activities of the antioxidant enzyme, superoxide dismutase (SOD) in hemocytes. Moreover, the relative mRNA expression of numerous immune-related genes, including proPO, TLR-2, Alf-1, NOX, Lysozyme, Crustin-1, and Cuznsod, was significantly higher stimulated hemocytes than in control (P < 0.05). We also reported the dose-dependent antiparasitic activity against Mesanophyrs sp., in stimulated hemocytes than in the control (P < 0.05). The present study collectively demonstrated that ß-glucan potentially stimulates innate immunity by elevating cellular enzyme responses and up-regulating the mRNA expression of genes associated with crab innate immunity. Thus, ß-glucan is a promising immunostimulant for swimming crab farming in crustaceans aquaculture.


Subject(s)
Brachyura/parasitology , Ciliophora/physiology , Euglena gracilis/chemistry , beta-Glucans/pharmacology , Animals , Antioxidants/pharmacology , Brachyura/drug effects , Brachyura/immunology , Ciliophora/drug effects , Host-Parasite Interactions/drug effects , beta-Glucans/chemistry
13.
Med Sci Monit ; 27: e927716, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33476310

ABSTRACT

BACKGROUND The aim of this study was to assess the impact of norepinephrine (NE), norepinephrine plus vasopressin (NE+VAS) and dopamine in patients with sepsis and heart failure. MATERIAL AND METHODS Data were extracted from the Medical Information Mart for Intensive Care III database, v1.4. Adults aged >18 years in an Intensive Care Unit (ICU) who had heart failure and took vasopressors were included. The patients were divided into 3 groups: NE, NE+VAS, and dopamine. Differences in survival, treatment time, and organ function among the 3 groups were compared. Propensity score matching (PSM) was used to screen for possible prognostic differences, and regression analysis was used to further analyze and predict prognoses. RESULTS A total of 1864 patients were included. There were significant differences among the 3 groups in 7-, 28-, and 90-day mortality after PSM. The 5-year survival rates among the 3 groups also were significantly different (P<0.001). After Cox regression analysis, NE+VAS was an independent risk factor affecting 5-year survival (P<0.001). After multiple linear regression, dopamine was the factor related to ICU and hospital lengths of stay. CONCLUSIONS Compared with NE or dopamine alone, NE+VAS can reduce survival in patients with sepsis and heart failure who need vasopressors. Compared with the other 2 treatment options, dopamine can shorten ICU and hospital stays for these patients.


Subject(s)
Dopamine/pharmacology , Heart Failure/drug therapy , Norepinephrine/pharmacology , Sepsis/drug therapy , Vasopressins/pharmacology , Acute Disease , Aged , Cardiotonic Agents/pharmacology , Cohort Studies , Critical Illness , Female , Heart Failure/mortality , Humans , Length of Stay/statistics & numerical data , Male , Retrospective Studies , Sepsis/mortality , Survival Rate , Vasoconstrictor Agents/pharmacology
14.
Dis Aquat Organ ; 144: 187-196, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34042066

ABSTRACT

In this study, a Gram-negative bacterium was isolated from diseased Scylla paramamosain and tentatively named strain QX17. The bacterial isolate was identified as Vibrio parahaemolyticus based on morphological and biochemical characteristics and molecular identification with the 16S rRNA and HSP60 genes. In the challenge experiment, S. paramamosain injected intramuscularly with the V. parahaemolyticus isolate developed pathological signs similar to the naturally diseased mud crabs. The infection experiment also showed that the median lethal dosage (LD50) for QX17 was 4.79 × 102 CFU g-1 (crab weight). Histopathological analysis of the diseased mud crabs infected with V. parahaemolyticus showed deformation and basement membrane rupture of hepatopancreatic tubules in the hepatopancreas, and disordered and broken muscle fiber in the muscle. Antimicrobial susceptibility tests revealed that QX17 was highly sensitive to most of the tested aminoglycosides, tetracyclines, and quinolones. To the best of our knowledge, this is the first study reporting isolation and antibiotic sensitivities of V. parahaemolyticus from cultured mud crabs. The discovery of V. parahaemolyticus in cultured mud crabs not only adds to the growing list of emerging pathogens in crab aquaculture in China, but also highlights the necessity of developing early detection strategies and appropriate interventions to reduce the damage caused by V. parahaemolyticus in mud crab aquaculture.


Subject(s)
Brachyura , Vibrio Infections , Vibrio parahaemolyticus , Animals , Brachyura/genetics , China/epidemiology , Disease Outbreaks , Phylogeny , RNA, Ribosomal, 16S , Vibrio Infections/veterinary
15.
Fish Shellfish Immunol ; 98: 819-831, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31751659

ABSTRACT

Massive infection caused by Cryptocaryon irritans is detrimental to the development of marine aquaculture. Recently, our lab found that Nibea albiflora has low sensitivity and low mortality to C. irritans infection. The present study was designed to investigate the mechanisms of the N. albiflora response to C. irritans infection by analyzing transcriptome changes in the skin. Skin samples of control and experimental groups with C. irritans infection were collected at 24 and 72 h (24 h control, 24 h post-infection, 72 h control, and 72 h post-infection). Three parallels were set for each group and sample time, and a total of 12 skin samples were collected for sequencing. Overall, 297,489,843 valid paired-end reads and 48,817 unigenes were obtained with an overall length of 59,010,494 nt. In pairwise comparisons, changes in expression occurred in 1621 (764 upregulated and 857 downregulated), 285 (180 upregulated and 105 downregulated), 993 (489 upregulated and 504 downregulated), and 37 (8 upregulated and 29 downregulated) genes at 24 h control vs 24 h post-infection, 72 h control vs 72 h post-infection, 24 h post-infection vs 72 h post-infection, and 24 h control vs 72 h control, respectively. Gene Ontology (GO) analysis of differentially expressed genes (DEGs) indicated that the number of genes enriched in GO sub-categories were ordered 24 h control vs 24 h post-infection > 24 h post-infection vs 72 h post-infection >72 h control vs 72 h post-infection > 24 h control vs 72 h control. Further analysis showed that immune-related GO terms (including immune system process, complement activation, and humoral immunity) were significantly enriched at both 72 h control vs 72 h post-infection and 24 h post-infection vs 72 h post-infection, but no immune-related GO terms were significantly enriched in the 24 h control vs 72 h control and at 24 h control vs 24 h post-infection, indicating that C. irritans infection mainly affected the physiological metabolism of N. albiflora at an early stage (24 h), and immune-related genes play an important role at a later stage (72 h) of infection. In KEGG pathway analysis, the complement and coagulation cascade pathway are involved in early infection. Hematopoietic cell lineage, natural killer (NK) cell-mediated cytotoxicity, and the intestinal immune network for IgA production are involved in later infection. Further analysis showed that the alternative pathway of complement and coagulation cascades plays an important role in the resistance of N. albiflora to early C. irritans infection. During late infection, CD34, IgM, and IgD were significantly upregulated in the hematopoietic cell lineage pathway. CCR9 was significantly downregulated, and IGH and PIGR were significantly upregulated in the intestinal immune network for IgA production. GZMB and IGH were significantly downregulated in NK cell-mediated cytotoxicity. These findings indicate that acquired immunity at the mRNA level was initiated during later infection. In addition, the IL-17 signaling pathway was enriched by downregulated DEGs at 24 h post-infection vs 72 h post-infection, suggesting the inflammatory response at 24 h was stronger than at 72 h and the invasion of the parasite has a greater impact on the host.


Subject(s)
Ciliophora Infections/veterinary , Ciliophora/physiology , Fish Diseases/immunology , Perciformes , Skin Diseases/veterinary , Transcriptome , Animals , Ciliophora Infections/immunology , Ciliophora Infections/parasitology , Fish Diseases/parasitology , Gene Expression Profiling/veterinary , Skin/metabolism , Skin Diseases/immunology , Skin Diseases/parasitology
16.
Exp Parasitol ; 212: 107886, 2020 May.
Article in English | MEDLINE | ID: mdl-32209315

ABSTRACT

In aquaculture of the swimming crab Portunus trituberculatus, massive deaths have been recorded in the winter months due to infection with a novel emerging parasite, Mesanophrys sp. However, no information was available regarding the prevention and control of this particular parasite. Therefore, the present study was conducted to evaluate the anti-parasitic efficacy and toxicity of formalin against the Mesanophrys sp. In vitro results showed that the anti-parasitic efficacy of formalin improved with concentration increasing from 0.0 to 20.0 ppm within 24 h. In particular, when treated with formalin at 16.0, 15.0, 11.0, 10.0, 9.0, and 6.0 ppm for 0.5, 1, 2, 4, 6, 12, and 24 h respectively, the Mesanophrys sp. mortality rate reached 100%. To gain insights into the effects the formalin treatment had on the parasite, cell micro- and ultra-structure were investigated. It was determined that the cells contracted gradually and became rounded, intracellular vacuoles were observed at early time points (Ф≤4.83 ± 1.26 µm) and then disappeared. Cilia were shed and macronuclear chromatin became condensed and agglutinated. Small holes and bubbles appeared on surface of the parasites. In an in vivo trial, formalin was applied prior to Mesanophrys sp. artificial infection as prophylaxis to P. trituberculatus. The results showed that formalin prophylactic treatment effectively prevented P. trituberculatus from Mesanophrys sp. infection, thus remarkably reducing the mortality of crabs compared with the non-formalin-exposed and infected crabs. Furthermore, the normal behavior and survival of P. trituberculatus were not impacted by the prophylactic treatment.


Subject(s)
Antiparasitic Agents/pharmacology , Brachyura/parasitology , Disinfectants/pharmacology , Formaldehyde/pharmacology , Oligohymenophorea/drug effects , Analysis of Variance , Animals , Aquaculture , Brachyura/growth & development , Chromatin/drug effects , Cilia/drug effects , Cilia/ultrastructure , DNA, Protozoan/drug effects , DNA, Protozoan/isolation & purification , Dose-Response Relationship, Drug , Electrophoresis, Agar Gel , Hemolymph/parasitology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Interference , Mitochondria/drug effects , Mitochondria/ultrastructure , Oligohymenophorea/genetics , Oligohymenophorea/pathogenicity , Oligohymenophorea/ultrastructure , Vacuoles/drug effects , Vacuoles/ultrastructure
17.
J Clin Pharm Ther ; 45(6): 1434-1441, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32860258

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Hypofibrinogenaemia is major treatment-related adverse event associated with tigecycline therapy, which in some cases can result in treatment termination. We aimed to identify the risk factors for tigecycline-induced hypofibrinogenaemia. METHODS: We retrospectively retrieved 426 Chinese patients who were undergoing tigecycline therapy ≥ 3 days. RESULTS AND DISCUSSION: There were 426 patients treated with tigecycline. The mean age was 60.31 ± 19.23 years, and 299 (70.19%) patients were male. Of the patients, 50.5% developed hypofibrinogenaemia and 10.1% of patients developed bleeding. Compared with before treatment, fibrinogen (FIB) significantly decreased after tigecycline was used while prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time (TT) significantly increased (all P < .001). There was no statistically significant difference in platelet count, hepatic function, and renal function before and after tigecycline treatment (all P > .05). In analysing relevant risk factors, extension of the tigecycline treatment course was found to be the main risk factor for tigecycline-induced hypofibrinogenaemia. Regardless of whether patients received the standard dose or high dose of tigecycline, the long treatment course group (>14 days) had more patients with hypofibrinogenaemia than the routine treatment course group (52.21% vs 40.74%, 48.81% vs 19.44%, all P < .05). Renal failure (whether requiring or not requiring dialysis) is also a risk factor for tigecycline-induced hypofibrinogenaemia (OR [95% CI]: 2.450 [1.335-4.496]). WHAT IS NEW AND CONCLUSION: Tigecycline administration has been related to hypofibrinogenaemia, especially patients with renal failure and when long treatment course of tigecycline are used. We recommend that coagulation function be closely monitored in patients with the aforementioned risk factors for tigecycline-induced hypofibrinogenaemia to ensure patient safety.


Subject(s)
Afibrinogenemia/chemically induced , Anti-Bacterial Agents/adverse effects , Tigecycline/adverse effects , Adult , Afibrinogenemia/epidemiology , Aged , Anti-Bacterial Agents/administration & dosage , Female , Hemorrhage/chemically induced , Hemorrhage/epidemiology , Humans , Male , Middle Aged , Partial Thromboplastin Time , Prothrombin Time , Renal Insufficiency/complications , Retrospective Studies , Risk Factors , Thrombin Time , Tigecycline/administration & dosage , Time Factors
18.
J Fish Dis ; 43(11): 1419-1429, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32880988

ABSTRACT

A disease outbreak occurred in swimming crab (Portunus trituberculatus) farmed in eastern China, with a mortality rate of more than 80%. To further investigate the characteristics and pathogenesis, we reported isolation, characterization and virulence of the causative agent of this disease from 10 sick crabs. Histopathological observation found that multiple tissues, especially haemolymph, contained lots of ciliates. The ciliate was isolated and cultured in vitro, and molecular and morphological studies were done. The results showed that SSU rDNA and LSU rDNA sequences of the ciliate were similar to Mesanophrys ciliates (>96.81%), while ITS1-5.8s-ITS2 sequence was similar to Mesanophrys pugettensis (95.37%) and identical to Orchitophrya stellarum (100%). Furthermore, the results of the morphological study confirmed that the ciliate was similar to Mesanophrys ciliates and O. stellarum cultured in supportive media, but different from O. stellarum cultured in living sperm cells of starfish (Leptasterias spp.). Also, the growth of the ciliate did not interfere with light, which was different from O. stellarum. Accordingly, the ciliate was classified as genus Mesanophrys and temporarily named as Mesanophrys sp. In addition, experimental infection confirmed that Mesanophrys sp. was the pathogen that infected farmed crabs. In summary, Mesanophrys sp. was first isolated and characterized in P. trituberculatus.


Subject(s)
Brachyura/parasitology , Ciliophora Infections/veterinary , Oligohymenophorea/isolation & purification , Animals , Aquaculture , Ciliophora Infections/epidemiology , DNA, Ribosomal , Disease Outbreaks/veterinary , Oligohymenophorea/classification , Oligohymenophorea/genetics , Oligohymenophorea/pathogenicity , Starfish/parasitology
19.
Fish Shellfish Immunol ; 94: 661-674, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31521785

ABSTRACT

The yellow drum Nibea albiflora is less susceptible to Cryptocaryon irritans infection than is the case with other marine fishes such as Larimichthys crocea, Lateolabrax japonicus, and Pagrus major. To investigate further their resistance mechanism, we infected the N. albiflora with the C. irritans at a median lethal concentration of 2050 theronts/g fish. The skins of the infected and the uninfected fishes were sampled at 24 h and 72 h followed by an extensive analysis of metabolism. The study results revealed that there were 2694 potential metabolites. At 24 h post-infection, 12 metabolites were up-regulated and 17 were down-regulated whereas at 72 h post-infection, 22 metabolites were up-regulated and 26 were down-regulated. Pathway enrichment analysis shows that the differential enriched pathways were higher at 24 h with 22 categories and 58 subcategories (49 up, 9 down) than at 72 h whereby the differential enriched pathways were 6 categories and 8 subcategories (4 up, 4 down). In addition, the principal component analysis (PCA) plot shows that at 24 h the metabolites composition of infected group were separately clustered to uninfected group while at 72 h the metabolites composition in infected group were much closer to uninfected group. This indicated that C. irritans caused strong metabolic stress on the N. albiflora at 24 h and restoration of the dysregulated metabolic state took place at 72 h of infection. Also, at 72 h post infection a total of 17 compounds were identified as potential biomarkers. Furthermore, out of 2694 primary metabolites detected, 23 metabolites could be clearly identified and semi quantified with a known identification number and assigned into 66 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the enriched KEGG pathways were mainly from metabolic pathway classes, including the metabolic pathway, biosynthesis of secondary metabolites, taurine and hypotaurine metabolism, purine metabolism, linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis. Others were glyoxylate and dicarboxylate metabolism, glutathione metabolism, and alanine, aspartate, and glutamate metabolism. Moreover, out of the identified metabolites, only 6 metabolites were statistically differentially expressed, namely, L -glutamate (up-regulated) at 24 h was important for energy and precursor for other glutathiones and instruments of preventing oxidative injury; 15-hydroxy- eicosatetraenoic acid (15-HETE), (S)-(-)-2-Hydroxyisocaproic acid, and adenine (up-regulated) at 72 h were important for anti-inflammatory and immune responses during infection; others were delta-valerolactam and betaine which were down-regulated compared to uninfected group at 72 h, might be related to immure responses including stimulation of immune system such as production of antibodies. Our results therefore further advance our understanding on the immunological regulation of N. albiflora during immune response against infections as they indicated a strong relationship between skin metabolome and C. irritans infection.


Subject(s)
Ciliophora Infections/veterinary , Fish Diseases/immunology , Immunity, Innate/immunology , Metabolome/immunology , Perciformes , Skin/immunology , Animals , Ciliophora/physiology , Ciliophora Infections/immunology , Ciliophora Infections/parasitology , Fish Diseases/parasitology
20.
Fish Shellfish Immunol ; 95: 227-235, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31654766

ABSTRACT

Myeloid differentiation factor 88 (MyD88) is a universal and essential adaptor protein required for the Toll-like receptors (TLRs) pathway activation in invertebrates as well as in vertebrates. Herein, we characterized a MyD88 (Pt-MyD88) cDNA sequence in the swimming crab (Portunus trituberculatus). The Pt-MyD88 ORF is predicted to encode 469 peptides with an N-terminal death domain and a typical C-terminal TIR domain. Real-Time quantitative PCR analysis showed that the Pt-MyD88 transcriptions were constitutively expressed in hemocytes, gill, intestine, heart and muscle in normal crab. The expressions of Pt-MyD88 would be down-regulated by V. alginolyticus or LPS challenge, and be up-regulated by WSSV infection in hemocytes. Intracellular localization showed Pt-MyD88 was distributed mainly in the cytoplasm when it was over-expressed in human cell HEK293T or in Drosophila Schneider 2 (S2). Functionally, over-expression of Pt-MyD88 could either activate the NF-κB in HEK293T cells or activate the promoters of Drosophila antimicrobial peptide genes (AMPs) in S2 cell. In primary cultured hemocytes of swimming crab, after Pt-MyD88 was knocked-down by specific long double strand RNA, the expression of anti-lipopolysaccharide factor1 (ALF1), hyastatin3, crustin1 and crustin3 have been significantly inhibited, while the expression of other AMPs is normal compared to non-specific dsRNA treated cells.


Subject(s)
Brachyura/genetics , Brachyura/immunology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Signal Transduction , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Base Sequence , Cell Line , Down-Regulation/immunology , Drosophila , Female , HEK293 Cells , Hemocytes/immunology , Humans , Lipopolysaccharides/physiology , Male , Models, Animal , Myeloid Differentiation Factor 88/chemistry , Phylogeny , Up-Regulation/immunology , Vibrio alginolyticus/physiology , White spot syndrome virus 1/physiology
SELECTION OF CITATIONS
SEARCH DETAIL