Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.147
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 175(7): 1887-1901.e18, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30550787

ABSTRACT

In early mammalian embryos, it remains unclear how the first cell fate bias is initially triggered and amplified toward cell fate segregation. Here, we report that a long noncoding RNA, LincGET, is transiently and asymmetrically expressed in the nucleus of two- to four-cell mouse embryos. Overexpression of LincGET in one of the two-cell blastomeres biases its progeny predominantly toward the inner cell mass (ICM) fate. Mechanistically, LincGET physically binds to CARM1 and promotes the nuclear localization of CARM1, which can further increase the level of H3 methylation at Arginine 26 (H3R26me), activate ICM-specific gene expression, upregulate transposons, and increase global chromatin accessibility. Simultaneous overexpression of LincGET and depletion of Carm1 no longer biased embryonic fate, indicating that the effect of LincGET in directing ICM lineage depends on CARM1. Thus, our data identify LincGET as one of the earliest known lineage regulators to bias cell fate in mammalian 2-cell embryos.


Subject(s)
Blastocyst/metabolism , Blastomeres/metabolism , Cell Lineage/physiology , Gene Expression Regulation, Developmental/physiology , RNA, Long Noncoding/biosynthesis , Animals , Blastocyst/cytology , Blastomeres/cytology , Female , Histones/metabolism , Methylation , Mice , Mice, Inbred ICR , Protein-Arginine N-Methyltransferases/biosynthesis , Protein-Arginine N-Methyltransferases/genetics , RNA, Long Noncoding/genetics
2.
Nature ; 612(7941): 679-684, 2022 12.
Article in English | MEDLINE | ID: mdl-36543955

ABSTRACT

Perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency exceeding 20% have been achieved in both green and red wavelengths1-5; however, the performance of blue-emitting PeLEDs lags behind6,7. Ultrasmall CsPbBr3 quantum dots are promising candidates with which to realize efficient and stable blue PeLEDs, although it has proven challenging to synthesize a monodispersed population of ultrasmall CsPbBr3 quantum dots, and difficult to retain their solution-phase properties when casting into solid films8. Here we report the direct synthesis-on-substrate of films of suitably coupled, monodispersed, ultrasmall perovskite QDs. We develop ligand structures that enable control over the quantum dots' size, monodispersity and coupling during film-based synthesis. A head group (the side with higher electrostatic potential) on the ligand provides steric hindrance that suppresses the formation of layered perovskites. The tail (the side with lower electrostatic potential) is modified using halide substitution to increase the surface binding affinity, constraining resulting grains to sizes within the quantum confinement regime. The approach achieves high monodispersity (full-width at half-maximum = 23 nm with emission centred at 478 nm) united with strong coupling. We report as a result blue PeLEDs with an external quantum efficiency of 18% at 480 nm and 10% at 465 nm, to our knowledge the highest reported among perovskite blue LEDs by a factor of 1.5 and 2, respectively6,7.

3.
Nucleic Acids Res ; 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-39436034

ABSTRACT

The diversity observed in canine breed phenotypes, together with their risk for heritabily disorders of relevance to dogs and humans, makes the species an ideal subject for studies aimed at understanding the genetic basis of complex traits and human biomedical models. Dog10K is an ongoing international collaboration that aims to uncover the genetic basis of phenotypic diversity, disease, behavior, and domestication history of dogs. To best present and make the extensive data accessible and user friendly, we have established the Dog10K (http://dog10k.kiz.ac.cn/) database, a comprehensive-omics resource summarizing multiple types of data. This database integrates single nucleotide variants (SNVs) from 1987 canine genomes, de-novo mutations (DNMs) from 43 dog breeds withĀ >40ƗĀ sequence, RNA-seq data of 105057 single nuclei from hippocampus, 74067 single cells from leukocytesĀ and 30 blood samples from published canid studies. We provide clear visualization, statistics, browse, searching, and downloading functions for all data. We have integrated three analysis tools, Selscan, LiftOver and AgeConversion, to aid researchers in custom exploration of the comprehensive-omics data. The Dog10K database will serve as a foundational platform for analyzing, presenting and utilizing canine multi-omics data.

4.
Trends Biochem Sci ; 46(10): 790-804, 2021 10.
Article in English | MEDLINE | ID: mdl-34053843

ABSTRACT

Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are among the most ancient small RNAs in all domains of life and are generated by the cleavage of tRNAs. Emerging studies have begun to reveal the versatile roles of tsRNAs in fundamental biological processes, including gene silencing, ribosome biogenesis, retrotransposition, and epigenetic inheritance, which are rooted in tsRNA sequence conservation, RNA modifications, and protein-binding abilities. We summarize the mechanisms of tsRNA biogenesis and the impact of RNA modifications, and propose how thinking of tsRNA functionality from an evolutionary perspective urges the expansion of tsRNA research into a wider spectrum, including cross-tissue/cross-species regulation and harnessing of the 'tsRNA code' for precision medicine.


Subject(s)
Gene Silencing , RNA, Transfer , RNA, Transfer/genetics
5.
J Biol Chem ; 300(10): 107756, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39260699

ABSTRACT

Aminoacyl-tRNA synthetases are fundamental to the translation machinery with emerging roles in transcriptional regulation. Previous cellular studies have demonstrated tyrosyl-tRNA synthetase (YARS1 or TyrRS) as a stress response protein through its cytosol-nucleus translocation to maintain cellular homeostasis. Here, we established a mouse model with a disrupted TyrRS nuclear localization signal, revealing its systemic impact on metabolism. Nuclear TyrRS deficiency (YarsΔNLS) led to reduced lean mass, reflecting a mild developmental defect, and reduced fat mass, possibly due to increased energy expenditure. Consistently, YarsΔNLS mice exhibit improved insulin sensitivity and reduced insulin levels, yet maintain normoglycemia, indicative of enhanced insulin action. Notably, YarsΔNLS mice also develop progressive hearing loss. These findings underscore the crucial function of nuclear TyrRS in the maintenance of fat storage and hearing and suggest that aminoacyl-tRNA synthetases' regulatory roles can affect metabolic pathways and tissue-specific health. This work broadens our understanding of how protein synthesis interconnects metabolic regulation to ensure energy efficiency.


Subject(s)
Hearing Loss , Tyrosine-tRNA Ligase , Animals , Mice , Tyrosine-tRNA Ligase/metabolism , Tyrosine-tRNA Ligase/genetics , Hearing Loss/metabolism , Hearing Loss/genetics , Hearing Loss/pathology , Cell Nucleus/metabolism , Energy Metabolism , Insulin Resistance , Male
6.
Development ; 149(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36227586

ABSTRACT

High-resolution ribosome fractionation and low-input ribosome profiling of bovine oocytes and preimplantation embryos has enabled us to define the translational landscapes of early embryo development at an unprecedented level. We analyzed the transcriptome and the polysome- and non-polysome-bound RNA profiles of bovine oocytes (germinal vesicle and metaphase II stages) and early embryos at the two-cell, eight-cell, morula and blastocyst stages, and revealed four modes of translational selectivity: (1) selective translation of non-abundant mRNAs; (2) active, but modest translation of a selection of highly expressed mRNAs; (3) translationally suppressed abundant to moderately abundant mRNAs; and (4) mRNAs associated specifically with monosomes. A strong translational selection of low-abundance transcripts involved in metabolic pathways and lysosomes was found throughout bovine embryonic development. Notably, genes involved in mitochondrial function were prioritized for translation. We found that translation largely reflected transcription in oocytes and two-cell embryos, but observed a marked shift in the translational control in eight-cell embryos that was associated with the main phase of embryonic genome activation. Subsequently, transcription and translation become more synchronized in morulae and blastocysts. Taken together, these data reveal a unique spatiotemporal translational regulation that accompanies bovine preimplantation development.


Subject(s)
Blastocyst , Embryonic Development , Pregnancy , Female , Cattle , Animals , Embryonic Development/genetics , Morula/metabolism , Blastocyst/metabolism , Oocytes/metabolism , Ribosomes/genetics , Gene Expression Regulation, Developmental
7.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37193676

ABSTRACT

Protein-deoxyribonucleic acid (DNA) interactions are important in a variety of biological processes. Accurately predicting protein-DNA binding affinity has been one of the most attractive and challenging issues in computational biology. However, the existing approaches still have much room for improvement. In this work, we propose an ensemble model for Protein-DNA Binding Affinity prediction (emPDBA), which combines six base models with one meta-model. The complexes are classified into four types based on the DNA structure (double-stranded or other forms) and the percentage of interface residues. For each type, emPDBA is trained with the sequence-based, structure-based and energy features from binding partners and complex structures. Through feature selection by the sequential forward selection method, it is found that there do exist considerable differences in the key factors contributing to intermolecular binding affinity. The complex classification is beneficial for the important feature extraction for binding affinity prediction. The performance comparison of our method with other peer ones on the independent testing dataset shows that emPDBA outperforms the state-of-the-art methods with the Pearson correlation coefficient of 0.53 and the mean absolute error of 1.11Ā kcal/mol. The comprehensive results demonstrate that our method has a good performance for protein-DNA binding affinity prediction. Availability and implementation: The source code is available at https://github.com/ChunhuaLiLab/emPDBA/.


Subject(s)
Proteins , Software , Proteins/chemistry , Computational Biology/methods , DNA/genetics , Protein Binding
8.
J Biol Chem ; 299(10): 105225, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673341

ABSTRACT

Recent advancements in small RNA sequencing have unveiled a previously hidden world of regulatory small noncoding RNAs (sncRNAs) that extend beyond the well-studied small interfering RNAs, microRNAs, and piwi-interacting RNAs. This exploration, starting with tRNA-derived small RNAs, has led to the discovery of a diverse universe of sncRNAs derived from various longer structured RNAs such as rRNAs, small nucleolar RNAs, small nuclear RNAs, Y RNAs, and vault RNAs, with exciting uncharted functional possibilities. In this perspective, we discuss the emerging functional principles of sncRNAs beyond the well-known RNAi-like mechanisms, focusing on those that operate independent of linear sequence complementarity but rather function in an aptamer-like fashion. Aptamers use 3D structure for specific interactions with ligands and are modulated by RNA modifications and subcellular environments. Given that aptamer-like sncRNA functions are widespread and present in species lacking RNAi, they may represent an ancient functional principle that predates RNAi. We propose a rethinking of the origin of RNAi and its relationship with these aptamer-like functions in sncRNAs and how these complementary mechanisms shape biological processes. Lastly, the aptamer-like function of sncRNAs highlights the need for caution in using small RNA mimics in research and therapeutics, as their specificity is not restricted solely to linear sequence.

9.
J Am Chem Soc ; 146(22): 15428-15437, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38795044

ABSTRACT

Chemical recycling to monomers (CRM) offers a promising closed-loop approach to transition from current linear plastic economy toward a more sustainable circular paradigm. Typically, this approach has focused on modulating the ceiling temperature (Tc) of monomers. Despite considerable advancements, polymers with low Tc often face challenges such as inadequate thermal stability, exemplified by poly(ƎĀ³-butyrolactone) (PGBL) with a decomposition temperature of Ć¢ĀˆĀ¼200 Ā°C. In contrast, floor temperature (Tf)-regulated polymers, particularly those synthesized via the ring-opening polymerization (ROP) of macrolactones, inherently exhibit enhanced thermodynamic stability as the temperature increases. However, the development of those Tf regulated chemically recyclable polymers remains relatively underexplored. In this context, by judicious design and efficient synthesis of a biobased macrocyclic diester monomer (HOD), we developed a type of Tf -regulated closed-loop chemically recyclable poly(ketal-ester) (PHOD). First, the entropy-driven ROP of HOD generated high-molar mass PHOD with exceptional thermal stability with a Td,5% reaching up to 353 Ā°C. Notably, it maintains a high Td,5% of 345 Ā°C even without removing the polymerization catalyst. This contrasts markedly with PGBL, which spontaneously depolymerizes back to the monomer above its Tc in the presence of catalyst. Second, PHOD displays outstanding closed-loop chemical recyclability at room temperature within just 1 min with tBuOK. Finally, copolymerization of pentadecanolide (PDL) with HOD generated high-performance copolymers (PHOD-co-PPDL) with tunable mechanical properties and chemical recyclability of both components.

10.
Int J Cancer ; 154(6): 1111-1123, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37842828

ABSTRACT

Effective screening and early detection are critical to improve the prognosis of gastric cancer (GC). Our study aims to explore noninvasive multianalytical biomarkers and construct integrative models for preliminary risk assessment and GC detection. Whole genomewide methylation marker discovery was conducted with CpG tandems target amplification (CTTA) in cfDNA from large asymptomatic screening participants in a high-risk area of GC. The methylation and mutation candidates were validated simultaneously using one plasma from patients at various gastric lesion stages by multiplex profiling with Mutation Capsule Plus (MCP). Helicobacter pylori specific antibodies were detected with a recomLine assay. Integrated models were constructed and validated by the combination of multianalytical biomarkers. A total of 146 and 120 novel methylation markers were found in CpG islands and promoter regions across the genome with CTTA. The methylation markers together with the candidate mutations were validated with MCP and used to establish a 133-methylation-marker panel for risk assessment of suspicious precancerous lesions and GC cases and a 49-methylation-marker panel as well as a 144-amplicon-mutation panel for GC detection. An integrated model comprising both methylation and specific antibody panels performed better for risk assessment than a traditional model (AUC, 0.83 and 0.63, P < .001). A second model for GC detection integrating methylation and mutation panels also outperformed the traditional model (AUC, 0.82 and 0.68, P = .005). Our study established methylation, mutation and H. pylori-specific antibody panels and constructed two integrated models for risk assessment and GC screening. Our findings provide new insights for a more precise GC screening strategy in the future.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , DNA Methylation , Early Detection of Cancer , Biomarkers , Risk Assessment , Helicobacter pylori/genetics , Biomarkers, Tumor/genetics , CpG Islands , Helicobacter Infections/diagnosis , Helicobacter Infections/genetics , Helicobacter Infections/pathology
11.
Small ; 20(37): e2311207, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38751193

ABSTRACT

Janus structure plays a crucial role in achieving chemically driven nanomotors with exceptional motion performance. However, Janus-structured chemically driven nanomotors with magnetic responsiveness are commonly fabricated by sputtering metal films. In the study, a self-assembly technique is employed to asymmetrically modify the surfaces of magnetic silica (SiO2@Fe3O4) nanoparticles with platinum nanoparticles, resulting in the formation of this kind nanomotors. Compared to platinumĀ film, platinum nanoparticles exhibit a larger surface area and a higher catalytic activity. Hence, the nanomotors demonstrate improved diffusion capabilities at a significantly lower concentration (0.05%) of hydrogen peroxide (H2O2). Meanwhile, exosomes have gained attention as a potential tool for the efficient delivery of biological therapeutic drugs due to their biocompatibility. However, the clinical applications of exosomes are limited by their restricted tropism. The previously obtained nanomotors are utilized to deliver exosomes, greatly enhancing its targetability. The drug doxorubicin (DOX) is subsequently encapsulated within exosomes, acting as a representative drug model. Under the conditions of H2O2 concentration at the tumor site, the exosomes exhibited a significantly enhanced rate of entry into the breast cancerĀ cells. The utilization of the nanomotors for exosomes presents a novel approach in the development of hybrid chemically and magnetically responsive nanomotors.


Subject(s)
Doxorubicin , Drug Delivery Systems , Exosomes , Hydrogen Peroxide , Platinum , Silicon Dioxide , Exosomes/chemistry , Exosomes/metabolism , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Hydrogen Peroxide/chemistry , Silicon Dioxide/chemistry , Platinum/chemistry , Drug Delivery Systems/methods , Magnetics , Cell Line, Tumor
12.
Small ; 20(27): e2305779, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38764279

ABSTRACT

Photocatalytic water splitting for clean hydrogen production has been a very attractive research field for decades. However, the insightful understanding of the actual active sites and their impact on catalytic performance is still ambiguous. Herein, a Pr-doped TiO2-supported Cu single atom (SA) photocatalyst is successfully synthesized (noted as Cu/Pr-TiO2). It is found that Pr dopants passivate the formation of oxygen vacancies, promoting the density of photogenerated electrons on the CuSAs, and optimizing the electronic structure and H* adsorption behavior on the CuSA active sites. The photocatalytic hydrogen evolution rate of the obtained Cu/Pr-TiO2 catalyst reaches 32.88Ā mmolĀ g-1Ā h-1, 2.3 times higher than the Cu/TiO2. Innovatively, the excellent catalytic activity and performance is attributed to the active sites change from O atoms to CuSAs after Pr doping is found. This work provides new insight for understanding the accurate roles of single atoms in photocatalytic water splitting.

13.
Biol Chem ; 405(5): 341-349, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38424700

ABSTRACT

Therapy-related leukemia carries a poor prognosis, and leukemia after chemotherapy is a growing risk in clinic, whose mechanism is still not well understood. Ikaros transcription factor is an important regulator in hematopoietic cells development and differentiation. In the absence of Ikaros, lymphoid cell differentiation is blocked at an extremely early stage, and myeloid cell differentiation is also significantly affected. In this work, we showed that chemotherapeutic drug etoposide reduced the protein levels of several isoforms of Ikaros including IK1, IK2 and IK4, but not IK6 or IK7, by accelerating protein degradation, in leukemic cells. To investigate the molecular mechanism of Ikaros degradation induced by etoposide, immunoprecipitation coupled with LC-MS/MS analysis was conducted to identify changes in protein interaction with Ikaros before and after etoposide treatment, which uncovered KCTD5 protein. Our further study demonstrates that KCTD5 is the key stabilizing factor of Ikaros and chemotherapeutic drug etoposide induces Ikaros protein degradation through decreasing the interaction of Ikaros with KCTD5. These results suggest that etoposide may induce leukemic transformation by downregulating Ikaros via KCTD5, and our work may provide insights to attenuate the negative impact of chemotherapy on hematopoiesis.


Subject(s)
Etoposide , Ikaros Transcription Factor , Ikaros Transcription Factor/metabolism , Etoposide/pharmacology , Humans , Proteolysis/drug effects , Antineoplastic Agents, Phytogenic/pharmacology
14.
Plant Biotechnol J ; 22(5): 1387-1401, 2024 May.
Article in English | MEDLINE | ID: mdl-38130080

ABSTRACT

Viral diseases seriously threaten rice production. Plasmodesmata (PD)-associated proteins are deemed to play a key role in viral infection in host plants. However, few PD-associated proteins have been discovered in rice to afford viral infection. Here, inspired by the infection mechanism in insect vectors, we identified a member of the Flotillin family taking part in the cell-to-cell transport of rice stripe virus (RSV) in rice. Flotillin1 interacted with RSV nucleocapsid protein (NP) and was localized on PD. In flotillin1 knockout mutant rice, which displayed normal growth, RSV intercellular movement was retarded, leading to significantly decreased disease incidence. The PD pore sizes of the mutant rice were smaller than those of the wild type due to more callose deposits, which was closely related to the upregulation of two callose synthase genes. RSV infection stimulated flotillin1 expression and enlarged the PD aperture via RSV NP. In addition, flotillin1 knockout decreased disease incidences of southern rice black-streaked dwarf virus (SRBSDV) and rice dwarf virus (RDV) in rice. Overall, our study reveals a new PD-associated protein facilitating virus cell-to-cell trafficking and presents the potential of flotillin1 as a target to produce broad-spectrum antiviral rice resources in the future.


Subject(s)
Hemiptera , Membrane Proteins , Oryza , Virus Diseases , Animals , Plasmodesmata/metabolism , Viral Proteins/metabolism , Oryza/metabolism , Plant Diseases , Hemiptera/metabolism
15.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37225402

ABSTRACT

SUMMARY: iTOL is a powerful and comprehensive phylogenetic tree visualization engine. However, adjusting to new templates can be time-consuming, especially when many templates are available. We developed an R package namely itol.toolkit to help users generate all 23 types of annotation files in iTOL. This R package also provides an all-in-one data structure to store data and themes, accelerating the step from metadata to annotation files of iTOL visualizations through automatic workflows. AVAILABILITY AND IMPLEMENTATION: The manual and source code are available at https://github.com/TongZhou2017/itol.toolkit.


Subject(s)
Metadata , Software , Phylogeny , Workflow
16.
Appl Environ Microbiol ; 90(2): e0195923, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38193681

ABSTRACT

Propanethiol (PT) is a hazardous pollutant that poses risks to both the environment and human well-being. Pseudomonas putida S-1 has been identified as a microorganism capable of utilizing PT as its sole carbon source. However, the metabolic pathway responsible for PT degradation in P. putida S-1 has remained poorly understood, impeding its optimization and practical application. In this study, we investigated the catabolic network involved in PT desulfurization with P. putida S-1 and identified key gene modules crucial to this process. Notably, propanethiol oxidoreductase (PTO) catalyzes the initial degradation of PT, a pivotal step for P. putida S-1's survival on PT. PTO facilitates the oxidation of PT, resulting H2S, H2O2, and propionaldehyde (PA). Catalase-peroxidase catalyzes the conversion of H2O2 to oxygen and water, while PA undergoes gradual conversion to Succinyl-CoA, which is subsequently utilized in the tricarboxylic acid cycle. H2S is digested in a comprehensive desulfurization network where sulfide-quinone oxidoreductase (SQOR) predominantly converts it to sulfane sulfur. The transcriptome analysis suggests that sulfur can be finally converted to sulfite or sulfate and exported out of the cell. The PT degradation capacity of P. putida S-1 was enhanced by increasing the transcription level of PTO and SQOR genes in vivo.IMPORTANCEThis work investigated the PT catabolism pathway in Pseudomonas putida S-1, a microorganism capable of utilizing PT as the sole carbon source. Critical genes that control the initiation of PT degradation were identified and characterized, such as pto and sqor. By increasing the transcription level of pto and sqor genes in vivo, we have successfully enhanced the PT degradation efficiency and growth rate of P. putida S-1. This work does not only reveal a unique PT degradation pathway but also highlights the potential of enhancing the microbial desulfurization process in the bioremediation of thiol-contaminated environment.


Subject(s)
Oxidoreductases , Pseudomonas putida , Quinone Reductases , Humans , Oxidoreductases/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Hydrogen Peroxide/metabolism , Sulfhydryl Compounds/metabolism , Biodegradation, Environmental , Sulfur/metabolism , Carbon/metabolism
17.
Mol Ecol ; 33(18): e17504, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39166453

ABSTRACT

The Venus flytrap sea anemone Actinoscyphia liui inhabits the nutrient-limited deep ocean in the tropical western Pacific. Compared with most other sea anemones, it has undergone a distinct modification of body shape similar to that of the botanic flytrap. However, the molecular mechanism by which such a peculiar sea anemone adapts to a deep-sea oligotrophic environment is unknown. Here, we report the chromosomal-level genome of A. liui constructed from PacBio and Hi-C data. The assembled genome is 522 Mb in size and exhibits a continuous scaffold N50 of 58.4 Mb. Different from most other sea anemones, which typically possess 14-18 chromosomes per haplotype, A. liui has only 11. The reduced number of chromosomes is associated with chromosome fusion, which likely represents an adaptive strategy to economize energy in oligotrophic deep-sea environments. Comparative analysis with other deep-sea sea anemones revealed adaptive evolution in genes related to cellular autophagy (TMBIM6, SESN1, SCOCB and RPTOR) and mitochondrial energy metabolism (MDH1B and KAD2), which may aid in A. liui coping with severe food scarcity. Meanwhile, the genome has undergone at least two rounds of expansion in gene families associated with fast synaptic transmission, facilitating rapid responses to water currents and prey. Positive selection was detected on putative phosphorylation sites of muscle contraction-related proteins, possibly further improving feeding efficiency. Overall, the present study provides insights into the molecular adaptation to deep-sea oligotrophic environments and sheds light upon potential effects of a novel morphology on the evolution of Cnidaria.


Subject(s)
Chromosomes , Genome , Sea Anemones , Animals , Sea Anemones/genetics , Genome/genetics , Chromosomes/genetics , Adaptation, Physiological/genetics
18.
Invest New Drugs ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369144

ABSTRACT

Studies have shown that the Zinc finger homeobox 4 (ZFHX4) might be a factor in the prognosis of malignancies. However, little is known about the association between the ZFHX4 mutation and the effectiveness of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) and melanoma. Three public ICIs-treated NSCLC cohorts were divided into discovery cohort (n=75) and validation cohort (n=62), which were used to evaluate the relationship between ZFHX4 mutation and ICIs effectiveness in NSCLC. Seven ICIs-treated melanoma cohorts (n = 418) were used to analyze the relationship between ZFHX4 mutation and immunotherapy efficacy in melanoma. NSCLC and skin cutaneous melanoma (SKCM) cohorts from The Cancer Genome Atlas (TCGA) were used to investigate underlying mechanism. Patients with ZFHX4 mutant-type (ZFHX4-Mut) showed a superior objective response rate (ORR) (P < 0.01) and longer progression-free survival (PFS) (P < 0.05) than patients with ZFHX4 wild-type (ZFHX4-WT) in NSCLC cohorts. In the melanoma cohorts, patients carrying ZFHX4-Mut had a higher ORR (P = 0.042) and longer overall survival (OS) (P = 0.011). Besides, patients with NSCLC and melanoma harboring ZFHX4-Mut had a higher tumor mutation burden (TMB) (P<0.001) and tumor neoantigen burden (TNB) (P<0.001) than those harboring ZFHX4-WT. ZFHX4 mutation was associated with higher levels of plasma B cells, activated CD4+ memory T cells, and CD8+ T cells. Seven DNA damage repair pathways were significantly enriched in the ZFHX4-Mut group. ZFHX4 mutation could serve as a predicter for the efficacy of ICIs therapy in NSCLC and melanoma.

19.
Phys Rev Lett ; 132(18): 184003, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759176

ABSTRACT

Controlling active transport of water through membrane channels is essential for advanced nanofluidic devices. Despite advancements in water nanopump design using techniques like short-range invasion and subnanometer-level control, challenges remain facilely and remotely realizing massive waters active transport. Herein, using molecular dynamic simulations, we propose an ultrahigh-flux nanopump, powered by frequency-specific terahertz stimulation, capable of unidirectionally transporting massive water through asymmetric-wettability membrane channels at room temperature without any external pressure. The key physics behind this terahertz-powered water nanopump is revealed to be the energy flow resulting from the asymmetric optical absorption of water.

20.
Transgenic Res ; 33(3): 149-157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842603

ABSTRACT

RNA silencing is an innate immune mechanism of plants against invasion by viral pathogens. Artificial microRNA (amiRNA) can be engineered to specifically induce RNA silencing against viruses in transgenic plants and has great potential for disease control. Here, we describe the development and application of amiRNA-based technology to induce resistance to soybean mosaic virus (SMV), a plant virus with a positive-sense single-stranded RNA genome. We have shown that the amiRNA targeting the SMV P1 coding region has the highest antiviral activity than those targeting other SMV genes in a transient amiRNA expression assay. We transformed the gene encoding the P1-targeting amiRNA and obtained stable transgenic Nicotiana benthamiana lines (amiR-P1-3-1-2-1 and amiR-P1-4-1-2-1). Our results have demonstrated the efficient suppression of SMV infection in the P1-targeting amiRNA transgenic plants in an expression level-dependent manner. In particular, the amiR-P1-3-1-2-1 transgenic plant showed high expression of amiR-P1 and low SMV accumulation after being challenged with SMV. Thus, a transgenic approach utilizing the amiRNA technology appears to be effective in generating resistance to SMV.


Subject(s)
Disease Resistance , MicroRNAs , Nicotiana , Plant Diseases , Plants, Genetically Modified , Potyvirus , MicroRNAs/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/virology , Plants, Genetically Modified/immunology , Nicotiana/genetics , Nicotiana/virology , Nicotiana/immunology , Plant Diseases/virology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Potyvirus/pathogenicity , Potyvirus/genetics , RNA Interference , Glycine max/genetics , Glycine max/virology , Glycine max/immunology
SELECTION OF CITATIONS
SEARCH DETAIL