Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
Add more filters

Publication year range
1.
Ann Surg Oncol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814549

ABSTRACT

BACKGROUND: The mechanism underlying the formation of gastric tumor deposits (TDs) is unclear. We aimed to explore the risk factors for the formation and prognostic value of TDs. METHODS: This retrospective analysis included 781 locally advanced gastric cancer (LAGC) patients from four medical institutions in China, from June 2014 to June 2018. The risk factors for TD formation and prognostic value were determined through univariate and multivariate analyses. RESULTS: Univariate analysis revealed that TD positivity was closely related to tumor diameter, Borrmann classification, differentiation degree, pT stage, pN stage, pTNM stage, and nerve and vascular invasion (p < 0.05). Multivariate logistic regression revealed that tumor diameter ≥ 5 cm (odds ratio [OR] 1.836, 95% confidence interval [CI] 1.165-2.894, p = 0.009) and vascular invasion (OR 2.152, 95% CI 1.349-3.433, p = 0.001) were independent risk factors for TD positivity. Multivariate Cox analysis revealed that TD positivity (OR 1.533, 95% CI 1.101-2.134, p = 0.011), tumor diameter ≥ 5 cm (OR 1.831, 95% CI 1.319-2.541, p < 0.001), pT4a stage (OR 1.652, 95% CI 1.144-2.386, p = 0.007), and vascular invasion (OR 1.458, 95% CI 1.059-2.008, p = 0.021) were independent risk factors for GC prognosis. The 5-year overall and disease-free survival of the TD-positive group showed significant effects among patients in the pT4a and pN3b stages (p < 0.05). CONCLUSIONS: TDs are closely related to tumor diameter and vascular invasion in LAGC patients, and TD positivity is an independent prognostic factor for LAGC patients, especially those at pT4a and pN3b stages.

2.
J Environ Manage ; 359: 121056, 2024 May.
Article in English | MEDLINE | ID: mdl-38704957

ABSTRACT

Extensive outbreaks of harmful algal blooms (HABs) occurred in the Fuchunjiang Reservoir in 2022, a crucial urban drinking water source, coinciding with extreme summer heatwaves. We hypothesize that these heatwaves contributed to HABs formation and expansion. Leveraging Landsat 8 and Sentinel-2 data, we employed clustering and machine learning methods to quantify the HABs distribution and area. Concurrent meteorological and water quality data aided in uncovering the effects of heatwave on HABs. When applying different methods to extract HABs from remote sensing images, random forest (RF) analyses indicated accuracies of 99.3% and 99.8% for Landsat 8 and Sentinel-2 data, respectively, while classification and regression tree (CART) analyses indicated 99.1% and 99.7% accuracies, respectively. Support vector machine (SVM) exhibited lower accuracies (83.5% and 97.4%). Thus RF, given its smaller differences between satellites and high accuracy, was selected for further analysis. Both satellites detected extensive HABs in 2022, with Sentinel-2 recording a peak area of 24.13 km2 (44.6% of cloud-free water area) on August 11, 2022. Increasing trends with amplified durations were observed for summer heatwaves in Jiande and Tonglu around the Fuchunjiang Reservoir. Notably, these areas experienced extreme heatwaves for 63 and 58 days in 2022, respectively, more than double the 1980-2022 average. From June 1 to October 8, 2022, water temperature peaks significantly coincided with expansive HABs and elevated chlorophyll a (Chl-a) concentration from 4.8 µg/L to 119.2 µg/L during the summer heatwaves. Our findings indicated that the reservoir became more HAB-prone during heatwave events, escalating the drinking water safety risk. These results emphasize the challenges faced by reservoir managers in dealing with climate-induced extreme heatwaves and underscore the urgency for heightened attention from water source management departments.


Subject(s)
Drinking Water , Harmful Algal Bloom , Seasons , Environmental Monitoring , China , Hot Temperature
3.
Environ Res ; 231(Pt 3): 116251, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37245569

ABSTRACT

High phosphorus (P) concentrations are commonly observed in lakes during algal blooms despite massive efforts on external nutrient reduction. However, the knowledge about the relative contribution of internal P loading linked with algal blooms on lake phosphorus (P) dynamics remains limited. To quantify the effect of internal loading on P dynamics, we conducted extensive spatial and multi-frequency nutrient monitoring from 2016 to 2021 in Lake Taihu, a large shallow eutrophic lake in China, and its tributaries (2017-2021). The in-lake P stores (ILSP) and external loading were estimated and then internal P loading was quantified from the mass balance equation. The results showed that the in-lake total P stores (ILSTP) ranged from 398.5 to 1530.2 tons (t), and exhibited a dramatic intra- and inter-annual variability. The annual internal TP loading released from sediment ranged from 1054.3 to 1508.4 t, which was equivalent to 115.6% (TP loading) of the external inputs on average, and responsible for the fluctuations of ILSTP on a weekly scale. High-frequency observations exemplified that ILSTP increased by 136.4% during algal blooms in 2017, while by only 47.2% as a result of external loading after heavy precipitation in 2020. Our study demonstrated that both bloom-induced internal loading and storm-induced external loading are likely to run counter significantly to watershed nutrient reduction efforts in large shallow lakes. More importantly, bloom-induced internal loading is higher than storm-induced external loading over the short term. Given the positive feedback loop between internal P loadings and algal bloom in eutrophic lakes, which explains the significant fluctuation of P concentration while nitrogen concentration decreased. It is emphasized that internal loading and ecosystem restoration are unignorable in shallow lakes, particularly in the algal-dominated region.


Subject(s)
Ecosystem , Lakes , Phosphorus/analysis , Environmental Monitoring/methods , Nitrogen/analysis , Eutrophication , China
4.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834473

ABSTRACT

Rind color is an economically important agronomic trait in eggplant that impacts consumer preferences. In this study, bulked segregant analysis and competitive allele-specific PCR were employed to identify the candidate gene for eggplant rind color through constructing a 2794 F2 population generated from a cross between "BL01" (green pericarp) and "B1" (white pericarp). Genetic analysis of rind color revealed that a single dominant gene controls green color of eggplant peel. Pigment content measurement and cytological observations demonstrated that chlorophyll content and chloroplast number in BL01 were higher than in B1. A candidate gene (EGP19168.1) was fine-mapped to a 20.36 Kb interval on chromosome 8, which was predicted to encode the two-component response regulator-like protein Arabidopsis pseudo-response regulator2 (APRR2). Subsequently, allelic sequence analysis revealed that a SNP deletion (ACT→AT) in white-skinned eggplant led to a premature termination codon. Genotypic validation of 113 breeding lines using the Indel marker closely linked to SmAPRR2 could predict the skin color (green/white) trait with an accuracy of 92.9%. This study will be valuable for molecular marker-assisted selection in eggplant breeding and provides theoretical foundation for analyzing the formation mechanism of eggplant peel color.


Subject(s)
Solanum melongena , Chromosome Mapping , Solanum melongena/genetics , Plant Breeding , Phenotype
5.
Environ Sci Technol ; 56(7): 4655-4664, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35258974

ABSTRACT

Lakes receive and actively process terrestrial dissolved organic matter (DOM) and play an important role in the global carbon cycle. Urbanization results in elevated inputs of nonpoint-source DOM to headwater streams. Retention of water in lakes allows time for alteration and transformation of the chemical composition of DOM by microbes and UV radiation. Yet, it remains unclear how anthropogenic and natural drivers impact the composition and biolability of DOM in non-pristine lakes. We used optical spectroscopy, Fourier transform ion cyclotron mass spectrometry, stable isotopic measurements, and laboratory bioincubations to investigate the chemical composition and biolability of DOM across two large data sets of lakes associated with a large gradient of urbanization in lowland Eastern China, encompassing a total of 99 lakes. We found that increased urban land use, gross domestic products, and population density in the catchment were associated with an elevated trophic level index, higher chlorophyll-a, higher bacterial abundance, and a higher amount of organic carbon with proportionally higher contribution of aliphatic and peptide-like DOM fractions, which can be highly biolabile. Catchment areas, water depth, lake area: catchment area, gross primary productivity, δ18O-H2O, and bacterial abundance, however, had comparatively little linkage with DOM composition and biolability. Urban land use is currently intensifying in many developing countries, and our results anticipate an increase in the level of biolabile aliphatic DOM from nonpoint sources and accelerated carbon cycling in lake ecosystems in such regions.


Subject(s)
Dissolved Organic Matter , Ecosystem , Carbon/analysis , Lakes/chemistry , Rivers
6.
J Environ Manage ; 306: 114476, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35051816

ABSTRACT

Eutrophication and its associated algal blooms are principal environmental challenges confronting lakes worldwide. The empirical relationships between nutrient (total nitrogen, TN; total phosphorus, TP) and chlorophyll a (Chla) level are widely used as a theoretical basis for lake eutrophication management. Here, seasonal environmental variables and Chla from 2005 to 2020 in Chinese shallow eutrophic Lake Taihu were examined and Chla-nutrient equations in the entire period and annually from 2005 to 2020 were explored using 95% quantile regression model. The results showed robust linear relationships of logChla-logTN and logChla-logTP in the vast majority of cases. Based on Chla-nutrient equations in the entire study period, 0.69 mg/L TN and 52 µg/L TP are recommended as nutrient threshold in Lake Taihu. Furthermore, the results revealed increasing Chla sensitivity to nutrient for each study month (i.e. February, May, August, and November) from 2005 to 2020, whose drivers included increase in water temperature and water level, decrease in wind speed, mass ratio of nitrogen to phosphorus, and grazing effect. It is noteworthy that atmospheric stilling is likely to be the key climatic factor promoting annual peak Chla in Lake Taihu. For one, the deviations of the sub-index of Trophic State Index indicated that light is a critical limiting factor of summer Chla in Lake Taihu. For another, calmer water mainly due to atmospheric stilling decreased near 40% non-algal turbidity and a substantially increased buoyant cyanobacteria during the study period, improving phytoplankton "light niche". Thus, increasing algal sensitivity to nutrient occurred until the additional algal-turbidity induce further light limitations or the exhaustion of TN (or TP) cause nutrient limitation. Given atmospheric stilling is a global phenomenon, this study would affect future algal bloom mitigation efforts in shallow lakes as temperature is always the focus in the recent literatures on global climate change.


Subject(s)
Environmental Monitoring , Lakes , China , Chlorophyll , Chlorophyll A , Eutrophication , Nitrogen/analysis , Nutrients , Phosphorus/analysis
7.
J Environ Manage ; 318: 115542, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35763998

ABSTRACT

Knowledge of phytoplankton limiting factors is essential for cost-efficient lake eutrophication management. Herein, we propose a statistical framework to explore site-specific phytoplankton limiting factors and their dependence on water depth (WD) in 54 lakes in the Chinese Eastern Plains ecoregion. First, the maximal chlorophyll a (Chla) response to total N (TN) or P (TP), representing a region-specific "standard" model where phytoplankton were primarily N- or P-limited, was quantified using a 95% quantile regression. Second, site-specific limiting factors were identified using analogical residual analysis. N- or P-limitation was inferred if FractionTN (i.e. fraction of Chla observed and predicted by the "standard" model for a given TN) > 0.95 or FractionTP >0.95; if both FractionTN and FractionTP <0.95 in a specific environmental condition (e.g. high non-algal turbidity), light limitation was suggested. As a result, 5%, 7%, 4%, 36%, 16%, 2%, and 30% of the sampling sites were limited by N, P, N+P, light availability, rapid flushing, abundant macrophytes, and unmeasured factors, respectively. Bloom control suggestions in the short run are proposed considering these actual limiting factors. Furthermore, the maximal FractionTN or FractionTP response to WD was explored, reflecting the effect of WD on FractionTN (or FractionTP) without significant confounders. The results indicated that phytoplankton in the studied freshwaters would be potentially light-limited, N-limited, N+P-co-limited, or P-limited depending on WD (<1.8, 1.8-2.1, 2.1-5.2, or >5.2 m, respectively), because N will gradually become surplus with increasing WD, while at very shallow depths, strong sediment re-suspension induces light limitation. This finding implies that long-term nutrient management strategies in the studied freshwaters that have WDs of 0-2.1, 2.1-5.2, and >5.2 m can entail control of N, N+P, and P, respectively. This study provides essential information for formulating context-dependent bloom control for lakes in our study area and serves as a valuable reference for developing a cost-efficient eutrophication management framework for other regions.


Subject(s)
Cyanobacteria , Lakes , China , Chlorophyll A , Environmental Monitoring , Eutrophication , Nitrogen/analysis , Phosphorus/analysis , Phytoplankton , Water
8.
J Environ Sci (China) ; 111: 229-239, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34949352

ABSTRACT

Eutrophication and harmful cyanobacterial blooms threaten water resources all over the world. There is a great controversy about controlling only phosphorus or controlling both nitrogen and phosphorus in the management of lake eutrophication. The primary argument against the dual nutrients control of eutrophication is that nitrogen fixation can compensate the nitrogen deficits. Thus, it is of great necessary to study the factors that can significantly affect the nitrogen fixation. Due to the difference of climate and human influence, the water quality of different lakes (such as water temperature, N:P ratio and water residence time) is also quite different. Numerous studies have reported that the low N:P ratio can intensify the nitrogen fixation capacities. However, the effects of temperature and water residence time on the nitrogen fixation remain unclear. Thus, 30 shallows freshwater lakes in the eastern plain of China were selected to measure dissolved N2 and Ar concentrations through N2: Ar method using a membrane inlet mass spectrometer to quantify the nitrogen fixation capacities and investigate whether the temperature and water residence time have a great impact on nitrogen fixation. The results have shown that the short lake water residence time can severely inhibit the nitrogen fixation capacities through inhibiting the growth of nitrogen-fixing cyanobacteria, changing the N:P ratio and resuspending the solids from sediments. Similarly, lakes with low water temperature also have a low nitrogen fixation capacity, suggesting that controlling nitrogen in such lakes is feasible if the growth of cyanobacteria is limited by nitrogen.


Subject(s)
Cyanobacteria , Eutrophication , China , Humans , Lakes , Nitrogen/analysis , Phosphorus/analysis , Temperature
9.
J Cell Physiol ; 236(11): 7591-7604, 2021 11.
Article in English | MEDLINE | ID: mdl-34041752

ABSTRACT

Uncontrolled recurrence and metastasis are important reasons for the high mortality rate of malignant tumors. Vimentin is positively correlated with the degree of malignancy of cancer cells. Vimentin is also highly expressed in colorectal cancer (CRC) cells and plays a critical role in the metastasis and prognosis of CRC. However, the molecular mechanism of vimentin in the progression of CRC is incompletely understood. Therefore, the most active regions (nucleotides: 785-1085 nt) of the vimentin promoter in CRC were identified using luciferase experiments. By transcription factor sequence search and mutation analysis, the activator protein 1 (AP-1) binding site in the region of 785-1085 nt was confirmed. The vimentin promoter activity was enhanced by overexpression of AP-1. The electrophoretic mobility shift assay and chromatin immunoprecipitation assay showed that the binding site was recognized by AP-1. By cell proliferation assay, colony-forming assay, scratch-wound assay, cell migration assay, and cell invasion assay, we demonstrated that the AP-1 overexpression increased CRC cell proliferation, migration, and invasion. However, when vimentin was knocked down by vimentin small hairpin RNA in the CRC cell of AP-1 overexpression, this trend disappeared. Animal experiments and immunohistochemistry showed that AP-1 promoted tumor growth by regulating the vimentin gene. In summary, AP-1 affected metastasis, invasion of CRC cells in vitro, and tumor growth in vivo by activating the vimentin promoter. This study might provide new insights into the molecular mechanisms of the development of CRC and provide potential therapeutic targets for CRC.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms/metabolism , Transcription Factor AP-1/metabolism , Vimentin/metabolism , Animals , Binding Sites , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , HEK293 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Promoter Regions, Genetic , Signal Transduction , Transcription Factor AP-1/genetics , Tumor Burden , Vimentin/genetics
10.
World J Surg ; 45(12): 3623-3632, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34494162

ABSTRACT

BACKGROUND: Parastomal hernia and fecal incontinence cause severe distress to the rectal cancer patients with stoma after abdominoperineal resection. We attempted a new colostomy technique through the gap between the abdominal oblique internal and external muscles to prevent parastomal hernia and improve quality of life. METHODS: This cohort study retrospectively examined clinical data from a total of 114 consecutive rectal cancer patients who underwent laparoscopic abdominoperineal resection in our center from March 2016 to March 2018 after propensity score matching. Group A included 57 patients who underwent colostomy through the gap between the abdominal oblique internal and oblique external muscles, while group B included 57 patients who underwent extraperitoneal colostomy. Patients' quality of life was evaluated using Fecal Incontinence Quality of Life (FIQL) Scale. RESULTS: Group A had a lower incidence of parastomal hernia (0% vs. 15.7%, p = 0.004) and higher quality of life, especially in lifestyle, coping/behavior and embarrassment domains (all p values < 0.05) than group B both during the follow-up period. The incidence of other outcomes did not differ between the groups. CONCLUSIONS: Colostomy through the gap between the abdominal oblique internal and oblique external muscle is a new technique showing both safety and effectiveness for preventing parastomal hernia and improving quality of life after laparoscopic abdominoperineal resection.


Subject(s)
Hernia, Ventral , Incisional Hernia , Rectal Neoplasms , Cohort Studies , Colostomy , Hernia, Ventral/epidemiology , Hernia, Ventral/surgery , Humans , Incidence , Incisional Hernia/epidemiology , Incisional Hernia/etiology , Incisional Hernia/prevention & control , Muscles , Quality of Life , Rectal Neoplasms/surgery , Retrospective Studies , Surgical Mesh
11.
Ecotoxicol Environ Saf ; 213: 112069, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33631636

ABSTRACT

Anthropogenic disturbances, such as pollution discharge and damming, can lead to a global decline in biodiversity in aquatic ecosystems. However, how such disturbances affect microbial community composition and function remains poorly understood. In November 2019, we explored bacterial diversity, community composition and metabolic function in Lake Tianmuhu, China, and in its upstream dammed river, using Illumina MiSeq sequencing and Biolog EcoPlate method based on carbon source utilization. Our results revealed higher variations in bacterial α- and ß-diversity in the dammed river ecosystem than in the lake ecosystem. In addition, the dammed river and lake ecosystems were significantly different in bacterial community compositions and metabolic structures. No significant relationship between species richness and functional (metabolic) diversity was observed in this study. The site that was most impacted by domestic wastewater had the lowest taxonomic diversity but highest metabolic capacity and activity, suggesting that community composition rather than species diversity is more important in determining ecosystem functioning. Overall, our findings indicate that anthropogenic disturbances can significantly alter bacterial community and function, and taxonomic diversity is a weak proxy for ecosystem functioning in a natural freshwater habitat.


Subject(s)
Lakes/microbiology , Microbiota , Wastewater , Water Microbiology , Bacteria , Biodiversity , China , Ecosystem , Rivers/chemistry
12.
J Environ Sci (China) ; 99: 143-150, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33183691

ABSTRACT

Phosphorus is a vital nutrient for algal growth, thus, a better understanding of phosphorus availability is essential to mitigate harmful algal blooms in lakes. Wind waves are a ubiquitous characteristic of lake ecosystems. However, its effects on the cycling of organic phosphorus and its usage by phytoplankton remain poorly elucidated in shallow eutrophic lakes. A mesocosm experiment was carried out to investigate the responses of alkaline phosphatase activity fractions to wind waves in large, shallow, eutrophic Lake Taihu. Results showed that wind-driven waves induced the release of alkaline phosphatase and phosphorus from the sediment, and dramatically enhanced phytoplanktonic alkaline phosphatase activity. However, compared to the calm conditions, bacterial and dissolved alkaline phosphatase activity decreased in wind-wave conditions. Consistently, the gene copies of Microcystis phoX increased but bacterial phoX decreased under wind-wave conditions. The ecological effects of these waves on phosphorus and phytoplankton likely accelerated the biogeochemical cycling of phosphorus and promoted phytoplankton production in Lake Taihu. This study provides an improved current understanding of phosphorus availability and the phosphorus strategies of plankton in shallow, eutrophic lakes.


Subject(s)
Lakes , Phosphorus , Alkaline Phosphatase , China , Ecosystem , Environmental Monitoring , Eutrophication , Phosphorus/analysis , Wind
13.
Biol Chem ; 401(2): 285-296, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31188741

ABSTRACT

The gene encoding transmembrane protein 100 (TMEM100) was first discovered to be transcribed by the murine genome. It has been recently proven that TMEM100 contributes to hepatocellular carcinoma and non-small-cell lung carcinoma (NSCLC). This study investigates the impact of TMEM100 expression on gastric cancer (GC). TMEM100 expression was remarkably downregulated in GC samples compared to the surrounding non-malignant tissues (p < 0.01). Excessive TMEM100 expression prohibited the migration and invasion of GC cells without influencing their growth. However, TMEM100 knockdown restored their migration and invasion potential. Additionally, TMEM100 expression restored the sensitivity of GC cells to chemotherapeutic drugs such as 5-fluouracil (5-FU) and cisplatin. In terms of TMEM100 modulation, it was revealed that BMP9 rather than BMP10, is the upstream modulator of TM3M100. HIF1α downregulation modulated the impact of TMEM100 on cell migration, chemotherapy sensitivity and invasion in GC cells. Eventually, the in vivo examination of TMEM100 activity revealed that its upregulation prohibits the pulmonary metastasis of GC cells and increases the sensitivity of xenograft tumors to 5-FU treatment. In conclusion, TMEM100 serves as a tumor suppressor in GC and could be used as a promising target for the treatment of GC and as a predictor of GC clinical outcome.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Membrane Proteins/genetics , Stomach Neoplasms/drug therapy , Animals , Biomarkers, Tumor/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cisplatin/pharmacology , Drug Screening Assays, Antitumor , Female , Fluorouracil/pharmacology , Humans , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Cells, Cultured
14.
Limnol Oceanogr ; 65(Suppl 1): S194-S207, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32051648

ABSTRACT

Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with Microcystis aeruginosa during blooms in 12 lakes spanning four continents as an initial test of the hypothesized Microcystis interactome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate that M. aeruginosa is cosmopolitan in lakes across a 280° longitudinal and 90° latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, like Microcystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. While Microcystis and the microbiome bacteria shared many genes, whole-community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across global Microcystis blooms, thereby providing initial support for the hypothesized Microcystis interactome.

15.
Environ Res ; 187: 109704, 2020 08.
Article in English | MEDLINE | ID: mdl-32473462

ABSTRACT

In recent decades, freshwater ecosystems have been threatened worldwide by multiple simultaneous stressors, including eutrophication, climate change and competing demands for water sources. However, understanding of the long-term variation of zooplankton communities remains limited because long-term observations are lacking. Here, using a long-term (19 year) monitoring dataset, we demonstrate the spatio-temporal variation of zooplankton communities in Lake Taihu, a large, shallow, heterogenous lake in China. With the development of eutrophication, the abundance and biomass of zooplankton first increased from 1998 to 2004, and then exhibited a decreasing trend thereafter. Specifically, the population of rotifer dramatically declined after 2001, while the abundance of copepod and cladoceran showed an increasing trend even though their biomass decreased significantly after 2008. The dominance of small cladocerans (Bosmina coregoni and Ceriodaphnia cornuta) and copepod (Limnothora sinensis) significantly increased with decreasing rotifer density after 2014. Moreover, the zooplankton community structure exhibited heterogenous spatial population dynamics. Cladoceran and rotifer were predominant in cyanobacteria-dominated regions, while a higher proportion of copepod were found in macrophyte-dominated regions. Analyses revealed that zooplankton communities were strongly affected by climate warming and nutrients. These results reinforce previous work demonstrating that the development of eutrophication and climate warming could change the structure of zooplankton community and increase the dominance of small-bodied crustacean. Our findings address the recognized gap in understanding the variation of the zooplankton community in Lake Taihu, and provide an opportunity to evaluate ongoing changes in the zooplankton community related to future environmental change scenarios.


Subject(s)
Lakes , Zooplankton , Animals , Biomass , China , Ecosystem , Eutrophication , Phytoplankton
16.
J Environ Manage ; 260: 109923, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32090794

ABSTRACT

Eutrophication and associated algal blooms are principal environmental challenges confronting lakes in China, particularly in the Eastern Plains ecoregion. The empirical relationships between nutrient and chlorophyll a (Chla) level and Secchi depth (SD) are widely used as a theoretical basis for lake eutrophication management. However, these relationships are largely influenced by hydromorphological conditions and biogeochemical processes. Thus, there is a need to establish a type-specific understanding of these interactions. In the current study, lakes in the Chinese Eastern Plains ecoregion were subdivided into four lake types according to water retention time (LRT), water depth, and water area. Regression analyses indicated that the impacts of nutrient (total nitrogen, TN; total phosphorus, TP) concentrations on summer Chla were significantly reduced in lakes with high inorganic suspended solids (ISS) (P<0.05). Meanwhile, the decrease in SD in these lakes were found to relate mainly to non-algal turbidity. In lakes characterized by both short LRT and high ISS content, the Chla exhibited limited response to nutrients. In contrast, in lakes with low ISS content and long LRT, the observed slopes of both Chla=f(TP) and SD=f(Chla) were significantly steeper (P < 0.05). The factors limiting summer algal growth and the development of type-specific nutrient criteria (TN and TP) of all four investigated lake types in the Eastern Plains ecoregion are discussed in the context of specific nutrients. Based on these results, we establish type-specific eutrophication assessment equations of TN, TP, Chla, and SD in our study lakes. Our results may provide essential information for achieving the cost-effective eutrophication management of lakes both in the Eastern Plains ecoregion and elsewhere with similar climatic and hydromorphological conditions. Moreover, we believe that the subdivision of lakes to allow type-specific eutrophication management framework may prove valuable for other ecoregions where the interpretation of empirical nutrient-Chla and SD relationships suffer from similar serious limitations.


Subject(s)
Chlorophyll A , Lakes , China , Chlorophyll , Environmental Monitoring , Eutrophication , Nitrogen , Nutrients , Phosphorus
17.
J Environ Sci (China) ; 97: 120-131, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32933727

ABSTRACT

Despite laboratory experiments that have been performed to study internal heavy metal release, our understanding of how heavy metals release in shallow eutrophic lakes remains limited for lacking in-situ evidence. This study used automatic environmental sensors and a water sampling system to conduct high-frequency in-situ observations (1-hr intervals) of water environmental variables and to collect water samples (3-hr intervals), with which to examine the release of internal heavy metals in Lake Taihu, China. Under conditions of disturbance by strong northerly winds, sediment resuspension in both the estuary area and the lake center caused particulate heavy metal resuspension. However, the patterns of concentrations of dissolved heavy metals in these two areas were complex. The concentrations of dissolved Se and Mo increased in both areas, indicating that release of internal dissolved Se and Mo is triggered by sediment resuspension. The concentrations of dissolved Ni, Zn, As, Mn, Cu, V, and Co tended to increase in the estuary area but decrease in the lake center. The different trends between these two areas were controlled by pH and cyanobacteria, which are related to eutrophication. During the strong northerly winds, the decrease in concentrations of dissolved heavy metals in the lake center was attributable primarily to absorption by the increased suspended solids, and to growth-related assimilation or surface adsorption by the increased cyanobacteria. The findings of this study suggest that, short-term changes of environmental conditions are very important in relation to reliable monitoring and risk assessment of heavy metals in shallow eutrophic lakes.


Subject(s)
Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Geologic Sediments , Lakes
18.
Appl Environ Microbiol ; 85(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31253684

ABSTRACT

Ammonium concentrations and temperature drive the activities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), but their effects on these microbes in eutrophic freshwater sediments are unclear. In this study, surface sediments collected from areas of Taihu Lake (China) with different degrees of eutrophication were incubated under three levels of nitrogen input and temperature, and the autotrophic growth of ammonia oxidizers was assessed using 13C-labeled DNA-based stable-isotope probing (SIP), while communities were characterized using MiSeq sequencing and phylogenetic analysis of 16S rRNA genes. Nitrification rates in sediment microcosms were positively correlated with nitrogen inputs, but there was no marked association with temperature. Incubation of SIP microcosms indicated that AOA and AOB amoA genes were labeled by 13C at 20°C and 30°C in the slightly eutrophic sediment, and AOB amoA genes were labeled to a much greater extent than AOA amoA genes in the moderately eutrophic sediment after 56 days. Phylogenetic analysis of 13C-labeled 16S rRNA genes revealed that the active AOA were mainly affiliated with the Nitrosopumilus cluster, with the Nitrososphaera cluster dominating in the slightly eutrophic sediment at 30°C with low ammonium input (1 mM). Active AOB communities were more sensitive to nitrogen input and temperature than were AOA communities, and they were exclusively dominated by the Nitrosomonas cluster, which tended to be associated with Nitrosomonadaceae-like lineages. Nitrosomonas sp. strain Is79A3 tended to dominate the moderately eutrophic sediment at 10°C with greater ammonium input (2.86 mM). The relative abundance responses of the major active communities to nitrogen input and temperature gradients varied, indicating niche differentiation and differences in the physiological metabolism of ammonia oxidizers that are yet to be described.IMPORTANCE Both archaea and bacteria contribute to ammonia oxidation, which plays a central role in the global cycling of nitrogen and is important for reducing eutrophication in freshwater environments. The abundance and activities of ammonia-oxidizing archaea and bacteria in eutrophic limnic sediments vary with different ammonium concentrations or with seasonal shifts, and how the two factors affect nitrification activity, microbial roles, and active groups in different eutrophic sediments is unclear. The significance of our research is in identifying the archaeal and bacterial responses to anthropogenic activity and climate change, which will greatly enhance our understanding of the physiological metabolic differences of ammonia oxidizers.


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Autotrophic Processes , Bacteria/metabolism , Eutrophication , Geologic Sediments/microbiology , China , Lakes , Nitrogen/metabolism , Oxidation-Reduction , RNA, Archaeal/analysis , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Temperature
19.
Environ Sci Technol ; 53(5): 2324-2331, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30776220

ABSTRACT

Phytoplankton phenology critically affects elements biogeochemical cycles, ecosystem structure, and productivity. However, our understanding about the phenological process and driving mechanism is still very limited due to the shortage of long-term observation data. We used all available daily MODIS-Aqua data from 2003 to 2017 to determine bloom start dates (BSDs) in a typical trophic lake (Lake Taihu) and investigate how phytoplankton BSDs respond to climate change and environmental factors. The results indicate that BSDs have advanced 29.9 days for the entire Lake Taihu from 2003 to 2017. Spatially, an earlier phytoplankton bloom was recorded in the northern bays and the littoral regions than in the center of open water. Air temperature, wind speed, and N/P ratio (N, total nitrogen; P, total phosphorus) were three important factors affecting phytoplankton phenology. Multiple linear correlation showed that air temperature, wind speed, and N/P ratio in Spring could explain 59.9% variability of BSDs for Lake Taihu. This study provides a quantitative assessment of phytoplankton phenological shifts and elucidates the inter-relationship between phenology parameters and environmental factors, thus improving our understanding on the potential impact of climate change and eutrophication on lake ecosystems. The starting earlier and lasting longer of phytoplankton are consistent with the expected effects of climate warming on aquatic ecosystem in recent decades, which will bring new challenges for algal bloom management in eutrophic Lake Taihu.


Subject(s)
Lakes , Phytoplankton , Biomass , China , Ecosystem , Environmental Monitoring , Eutrophication
20.
Zhongguo Zhong Yao Za Zhi ; 44(23): 5124-5128, 2019 Dec.
Article in Zh | MEDLINE | ID: mdl-32237348

ABSTRACT

Cultivated ginseng in the farmland would become the mainly planting mode of Panax ginseng. However,there are relatively few cultivation ginseng varieties for farmland in China. Correlative analysis of qualitity and agronomic traits of P. ginseng cultivation in the farmland could provide a reference for the selection of excellent germplasm and new variety breeding of P. ginseng. In this study,the main index of saponin and agronomic traits of 4-6 years' samples were analyzed by UPLC and measured. The results show that there was significant difference in agronomic indexes of Damaya. The coefficient of variation of the root length( CV = 41. 97%) and fresh weight( CV = 31. 81%) were maximum,and the coefficient of variation of the stems thickness( 16. 72%) and root thickness were minimum. There was a significant correlation between yield and root thickness( P<0. 05). There was significant difference in drug yield of different harvest years( P<0. 05),and the yield of 6-years was 31. 52%-39. 69% higher than 4-years. However,there wasn't significant difference in total ginsenosides between 4 and 6 years old P. ginseng,but there was significant difference in ginseng Rg2,Rc and Rb2( P<0. 05),and the ginsenoside contents of different harvesting years were accorded with the criterion standards of 2015 Chinese Pharmacopoeia. There was no significant correlation between the saponin and the agronomic trait,while there was positive correlation with root thickness( P < 0. 05). Therefore,the stem diameter was positive correlation with yield of P. ginseng. Selection of the stem thickness of seedlings is beneficial to the increase of the yield and breeding of P. ginseng.


Subject(s)
Crop Production , Ginsenosides/analysis , Panax/chemistry , China , Plant Breeding , Plant Roots/growth & development , Plant Stems/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL