Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 173(7): 1716-1727.e17, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29779945

ABSTRACT

Sunlight exposure is known to affect mood, learning, and cognition. However, the molecular and cellular mechanisms remain elusive. Here, we show that moderate UV exposure elevated blood urocanic acid (UCA), which then crossed the blood-brain barrier. Single-cell mass spectrometry and isotopic labeling revealed a novel intra-neuronal metabolic pathway converting UCA to glutamate (GLU) after UV exposure. This UV-triggered GLU synthesis promoted its packaging into synaptic vesicles and its release at glutamatergic terminals in the motor cortex and hippocampus. Related behaviors, like rotarod learning and object recognition memory, were enhanced after UV exposure. All UV-induced metabolic, electrophysiological, and behavioral effects could be reproduced by the intravenous injection of UCA and diminished by the application of inhibitor or short hairpin RNA (shRNA) against urocanase, an enzyme critical for the conversion of UCA to GLU. These findings reveal a new GLU biosynthetic pathway, which could contribute to some of the sunlight-induced neurobehavioral changes.


Subject(s)
Brain/radiation effects , Glutamic Acid/biosynthesis , Learning/radiation effects , Memory/radiation effects , Ultraviolet Rays , Animals , Brain/metabolism , Brain/pathology , Chromatography, High Pressure Liquid , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/physiology , Patch-Clamp Techniques , RNA Interference , RNA, Small Interfering/metabolism , Tandem Mass Spectrometry , Urocanate Hydratase/antagonists & inhibitors , Urocanate Hydratase/genetics , Urocanate Hydratase/metabolism , Urocanic Acid/blood , Urocanic Acid/metabolism
2.
Nat Chem Biol ; 20(7): 835-846, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38287154

ABSTRACT

Synchronized ferroptosis contributes to nephron loss in acute kidney injury (AKI). However, the propagation signals and the underlying mechanisms of the synchronized ferroptosis for renal tubular injury remain unresolved. Here we report that platelet-activating factor (PAF) and PAF-like phospholipids (PAF-LPLs) mediated synchronized ferroptosis and contributed to AKI. The emergence of PAF and PAF-LPLs in ferroptosis caused the instability of biomembranes and signaled the cell death of neighboring cells. This cascade could be suppressed by PAF-acetylhydrolase (II) (PAFAH2) or by addition of antibodies against PAF. Genetic knockout or pharmacological inhibition of PAFAH2 increased PAF production, augmented synchronized ferroptosis and exacerbated ischemia/reperfusion (I/R)-induced AKI. Notably, intravenous administration of wild-type PAFAH2 protein, but not its enzymatically inactive mutants, prevented synchronized tubular cell death, nephron loss and AKI. Our findings offer an insight into the mechanisms of synchronized ferroptosis and suggest a possibility for the preventive intervention of AKI.


Subject(s)
Acute Kidney Injury , Ferroptosis , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/drug therapy , Ferroptosis/drug effects , Animals , Mice , Mice, Inbred C57BL , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Platelet Activating Factor/metabolism , Mice, Knockout , Humans , Male
3.
Cell Mol Life Sci ; 81(1): 174, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597936

ABSTRACT

Mature spermatozoa with normal morphology and motility are essential for male reproduction. The epididymis has an important role in the proper maturation and function of spermatozoa for fertilization. However, factors related to the processes involved in spermatozoa modifications are still unclear. Here we demonstrated that CCDC28A, a member of the CCDC family proteins, is highly expressed in testes and the CCDC28A deletion leads to male infertility. We found CCDC28A deletion had a mild effect on spermatogenesis. And epididymal sperm collected from Ccdc28a-/- mice showed bent sperm heads, acrosomal defects, reduced motility and decreased in vitro fertilization competence whereas their axoneme, outer dense fibers, and fibrous sheath were all normal. Furthermore, we found that CCDC28A interacted with sperm acrosome membrane-associated protein 1 (SPACA1) and glycogen synthase kinase 3a (GSK3A), and deficiencies in both proteins in mice led to bent heads and abnormal acrosomes, respectively. Altogether, our results reveal the essential role of CCDC28A in regulating sperm morphology and motility and suggesting a potential marker for male infertility.


Subject(s)
Infertility, Male , Sperm Motility , Male , Animals , Mice , Humans , Sperm Motility/genetics , Semen , Infertility, Male/genetics , Sperm Head , Spermatozoa
4.
Nat Methods ; 18(7): 788-798, 2021 07.
Article in English | MEDLINE | ID: mdl-34127857

ABSTRACT

Lysosomes are critical for cellular metabolism and are heterogeneously involved in various cellular processes. The ability to measure lysosomal metabolic heterogeneity is essential for understanding their physiological roles. We therefore built a single-lysosome mass spectrometry (SLMS) platform integrating lysosomal patch-clamp recording and induced nano-electrospray ionization (nanoESI)/mass spectrometry (MS) that enables concurrent metabolic and electrophysiological profiling of individual enlarged lysosomes. The accuracy and reliability of this technique were validated by supporting previous findings, such as the transportability of lysosomal cationic amino acids transporters such as PQLC2 and the lysosomal trapping of lysosomotropic, hydrophobic weak base drugs such as lidocaine. We derived metabolites from single lysosomes in various cell types and classified lysosomes into five major subpopulations based on their chemical and biological divergence. Senescence and carcinoma altered metabolic profiles of lysosomes in a type-specific manner. Thus, SLMS can open more avenues for investigating heterogeneous lysosomal metabolic changes during physiological and pathological processes.


Subject(s)
Lysosomes/metabolism , Metabolomics/methods , Patch-Clamp Techniques , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Cellular Senescence , Fibroblasts/cytology , Fibroblasts/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lidocaine/chemistry , Lidocaine/metabolism , Reproducibility of Results , Signal-To-Noise Ratio , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
5.
Cell Tissue Res ; 393(2): 265-279, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37247031

ABSTRACT

Osteoblast differentiation is regulated by various transcription factors, signaling molecules, and posttranslational modifiers. The histone acetyltransferase Mof (Kat8) is involved in distinct physiological processes. However, the exact role of Mof in osteoblast differentiation and growth remains unknown. Herein, we demonstrated that Mof expression with histone H4K16 acetylation increased during osteoblast differentiation. Inhibition of Mof by siRNA knockdown or small molecule inhibitor, MG149 which is a potent histone acetyltransferase inhibitor, reduced the expression level and transactivation potential of osteogenic key markers, Runx2 and Osterix, thus inhibiting osteoblast differentiation. Besides, Mof overexpression also enhanced the protein levels of Runx2 and Osterix. Mof could directly bind the promoter region of Runx2/Osterix to potentiate their mRNA levels, possibly through Mof-mediated H4K16ac to facilitate the activation of transcriptional programs. Importantly, Mof physically interacts with Runx2/Osterix for the stimulation of osteoblast differentiation. Yet, Mof knockdown showed indistinguishable effect on cell proliferation or apoptosis in MSCs and preosteoblast cells. Taken together, our results uncover Mof functioning as a novel regulator of osteoblast differentiation via the promotional effects on Runx2/Osterix and rationalize Mof as a potential therapeutic target, like possible application of inhibitor MG149 for the treatment of osteosarcoma or developing specific Mof activator to ameliorate osteoporosis.


Subject(s)
Osteogenesis , Transcription Factors , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Histone Acetyltransferases/metabolism , Osteoblasts , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Mice
7.
Ann Clin Microbiol Antimicrob ; 20(1): 63, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488786

ABSTRACT

BACKGROUND: Extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae has become a public health concern. This study aimed to compare the clinical outcomes of patients with nonurinary source bacteraemia caused by ESBL-producing Escherichia coli (E. coli) or Klebsiella pneumoniae (ESBL-producing EK) receiving ß-lactam/ß-lactamase inhibitor combinations (BLICs) versus carbapenem treatment and assess the risk factors of mortality with these two drugs. METHODS: We conducted a retrospective single-centre study of adult hospitalised patients with ESBL-producing EK bloodstream infection (BSI) from nonurinary source at our centre over a 4-year period. One hundred and eighty patients who received BLICs or carbapenems were included in the analysis. The outcome variables were 14-day treatment failure and 30-day mortality. For more reliable results, propensity score analysis was performed to compare the efficacy of the two drugs and analyse their risk factors for 30-day mortality. RESULTS: Out of 180 patients, 114 received BLICs, and 66 received carbapenem therapy. Compared to carbapenem-treated patients, those treated with BLICs were older and had higher age-adjusted Charlson comorbidity index, but they had shorter stay in the hospital. Additionally, their Pitt bacteraemia score, SOFA score, rate of leukaemia, and immune compromise were lower. After propensity score matching (PSM), the baseline characteristics of patients in the two treatment groups were balanced. BLICs were associated with a higher 14-day treatment failure rate (20.6%, 13/63) than carbapenems (16.3%, 7/43), although the difference was not significant in either univariate analysis (P = 0.429) or multivariate analysis (P = 0.122). And the 30-day mortality rate in BTG (11.1%, 7/63) and CTG (11.6%, 5/43) did not significantly differ (univariate analysis, P = 0.926; multivariate analysis, P = 0.420). In the multivariate analysis, after PSM, leukaemia was the only independent predictor of mortality in both BTG and CTG. CONCLUSIONS: Our study showed that BLICs had higher 14-day treatment failure rate compared with carbapenems, although there were no statistically significant differences because of the small number of patients, therefore, further evaluation of the efficacy of BLICs is needed.


Subject(s)
Bacteremia/drug therapy , Carbapenems/therapeutic use , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , beta-Lactamase Inhibitors/therapeutic use , Adult , Aged , Escherichia coli/isolation & purification , Female , Humans , Klebsiella pneumoniae/isolation & purification , Lactams , Male , Middle Aged , Retrospective Studies
8.
Proc Natl Acad Sci U S A ; 114(10): 2586-2591, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223513

ABSTRACT

The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules.


Subject(s)
Cytoplasm/metabolism , Mass Spectrometry/methods , Neurons/chemistry , Single-Cell Analysis/methods , Animals , Metabolic Networks and Pathways/genetics , Patch-Clamp Techniques/methods
9.
Immunopharmacol Immunotoxicol ; 40(4): 303-308, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30111205

ABSTRACT

OBJECTIVE: Lens epithelial cell (LEC) membrane damage is one of the pathogenesis of cataract. High mobility group box-1 (HMGB-1) and nuclear factor-κB (NF-κB) play vital roles in a variety of diseases, such as inflammation. Ketamine has numerous pharmacological effects that can inhibit inflammation. However, its role in cataract rats LECs has not yet been elucidated. MATERIALS AND METHODS: LECs were isolated from SD rats and cultured in vitro. The cells were randomly divided into three groups, including the control group, cataract model group induced by H2O2, and ketamine group treated by 10 mM ketamine under H2O2 environment. LECs proliferation was assessed by MTT assay. LECs apoptosis was evaluated by Caspase-3 activity detection. NF-κB mRNA and protein expressions were tested by real-time PCR and Western blot. HMGB-1 expressions in cells and supernatant were detected by real-time PCR and ELISA. TNF-α and IL-1ß secretions were detected by ELISA. RESULTS: In H2O2 model group, the LECs proliferation was significantly inhibited, the caspase-3 activity significantly increased, HMGB-1 mRNA and secretion significantly enhanced, NF-κB mRNA and protein levels significantly elevated, compared to the Control group (p < .05). While the TNF-α and IL-1ß secretions significantly up-regulated in H2O2 model group compared to the Control group (p < .05). Ketamine significantly promoted the LECs proliferation, significantly reduced the caspase-3 activity, and significantly declined the HMGB expression compared to H2O2 model group (p < .05). The NF-κB mRNA and protein levels were significantly decreased, TNF-α and IL-1ß secretions were significantly decreased in the Ketamine group compared with the model group (p < .05). CONCLUSIONS: Ketamine delays the progression of oxidative and damaged cataract by regulating HMGB-1/NF-κB expression, inhibiting TNF-α, IL-1ß, and apoptosis, and promoting cell proliferation.


Subject(s)
Cataract/prevention & control , Epithelial Cells/metabolism , HMGB1 Protein/metabolism , Ketamine/pharmacology , Lens, Crystalline/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Animals , Apoptosis/drug effects , Cataract/chemically induced , Cataract/metabolism , Cataract/pathology , Epithelial Cells/pathology , Hydrogen Peroxide/toxicity , Lens, Crystalline/pathology , Male , Oxidation-Reduction/drug effects , Rats , Rats, Sprague-Dawley
10.
Molecules ; 23(2)2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29425156

ABSTRACT

Black pepper (Piper nigrum L.) is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC) degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC) and ultraviolet-visible and visible (UV-Vis) spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.


Subject(s)
Ascorbic Acid/metabolism , Chlorophyll/metabolism , Piper nigrum/metabolism , Polyphenols/metabolism , Catechol Oxidase/metabolism , Color , Oxidation-Reduction , Plant Extracts/isolation & purification , Spices
11.
Molecules ; 23(8)2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30096911

ABSTRACT

In the present study, nontargeted metabolomics was used to screen the phenolic and polyhydroxy compounds in pepper products. A total of 186 phenolic and polyhydroxy compounds, including anthocyanins, proanthocyanidins, catechin derivatives, flavanones, flavones, flavonols, isoflavones and 3-O-p-coumaroyl quinic acid O-hexoside, quinic acid (polyhydroxy compounds), etc. For the selected 50 types of phenolic compound, except malvidin 3,5-diglucoside (malvin), l-epicatechin and 4'-hydroxy-5,7-dimethoxyflavanone, other compound contents were present in high contents in freeze-dried pepper berries, and pinocembrin was relatively abundant in two kinds of pepper products. The score plots of principal component analysis indicated that the pepper samples can be classified into four groups on the basis of the type pepper processing. This study provided a comprehensive profile of the phenolic and polyhydroxy compounds of different pepper products and partly clarified the factors responsible for different metabolite profiles in ongoing studies and the changes of phenolic compounds for the browning mechanism of black pepper.


Subject(s)
Carboxylic Acids/metabolism , Metabolomics/methods , Phenols/metabolism , Piper nigrum/metabolism , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Metabolome , Plant Extracts/chemistry , Principal Component Analysis
12.
Mediators Inflamm ; 2016: 4897890, 2016.
Article in English | MEDLINE | ID: mdl-27034591

ABSTRACT

Hormones (progesterone and estradiol) change greatly during pregnancy; however, the mechanism of hormonal changes on gingival inflammation is still unclear. This study is to evaluate the effects of hormonal changes during pregnancy on gingival inflammation and interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in gingival crevicular fluid (GCF). 30 periodontally healthy pregnant women were evaluated in the first, second, and third trimesters. 20 periodontally healthy nonpregnant women were evaluated twice (once per subsequent month). Clinical parameters including probing pocket depth (PPD), bleeding index (BI), gingival index (GI), clinical attachment level (CAL), and plaque index (PLI) were recorded. GCF levels of IL-1ß and TNF-α and serum levels of progesterone and estradiol were measured. From the data, despite low PLI, BI and GI increased significantly during pregnancy; however, no significant changes in PLI, CAL, IL-1ß, or TNF-α GCF levels were observed. Although IL-1ß, not TNF-α, was higher in pregnant group than in nonpregnant group, they showed no correlation with serum hormone levels during pregnancy. GI and BI showed significant positive correlation with serum hormone levels during pregnancy. This study suggests that sex hormone increase during pregnancy might have an effect on inflammatory status of gingiva, independent of IL-1ß and TNF-α in GCF.


Subject(s)
Estradiol/blood , Gingivitis/blood , Interleukin-1beta/blood , Progesterone/blood , Tumor Necrosis Factor-alpha/blood , Adult , Female , Gingival Crevicular Fluid/metabolism , Humans , Pregnancy , Pregnancy Trimesters
13.
Anal Bioanal Chem ; 406(27): 6857-66, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24972876

ABSTRACT

Current contaminant and residue monitoring throughout the food chain is based on sampling, transport, administration, and analysis in specialized control laboratories. This is a highly inefficient and costly process since typically more than 99% of the samples are found to be compliant. On-site simplified prescreening may provide a scenario in which only samples that are suspect are transported and further processed. Such a prescreening can be performed using a small attachment on a cellphone. To this end, a cellphone-based imaging platform for a microsphere fluorescence immunoassay that detects the presence of anti-recombinant bovine somatotropin (rbST) antibodies in milk extracts was developed. RbST administration to cows increases their milk production, but is illegal in the EU and a public health concern in the USA. The cellphone monitors the presence of anti-rbST antibodies (rbST biomarker), which are endogenously produced upon administration of rbST and excreted in milk. The rbST biomarker present in milk extracts was captured by rbST covalently coupled to paramagnetic microspheres and labeled by quantum dot (QD)-coupled detection antibodies. The emitted fluorescence light from these captured QDs was then imaged using the cellphone camera. Additionally, a dark-field image was taken in which all microspheres present were visible. The fluorescence and dark-field microimages were analyzed using a custom-developed Android application running on the same cellphone. With this setup, the microsphere fluorescence immunoassay and cellphone-based detection were successfully applied to milk sample extracts from rbST-treated and untreated cows. An 80% true-positive rate and 95% true-negative rate were achieved using this setup. Next, the cellphone-based detection platform was benchmarked against a newly developed planar imaging array alternative and found to be equally performing versus the much more sophisticated alternative. Using cellphone-based on-site analysis in future residue monitoring can limit the number of samples for laboratory analysis already at an early stage. Therewith, the entire monitoring process can become much more efficient and economical.


Subject(s)
Biomarkers/metabolism , Cell Phone , Fluorescent Antibody Technique/methods , Milk/metabolism , Animals , Microspheres
14.
Plants (Basel) ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891313

ABSTRACT

Vanilla (Vanilla planifolia Andrews) is a valuable orchid spice cultivated for its highly priced beans. Vanilla has been planted in Hainan province of China via cutting propagation for about 40 years. The yield has been decreasing annually for the past ten years due to pod numbers declining significantly even though it seems to grow normally without disease symptoms, while the reason is still unknown. In this study, we found that Cymbidium mosaic virus (CymMV), one of the most devastating viruses causing losses in the vanilla industry, massively presented within the pods and leaves of vanilla plants, so the virus infecting the vanilla seems to be a highly probable hypothesis of the main contributions to low yield via decreasing the number of pods. This represents the first speculation of CymMV possibly affecting the yield of vanilla in China, indicating the important role of virus elimination in restoring high yield in vanilla. This research can also serve as a warning to important economic crops that rely on cuttings for propagation, demonstrating that regular virus elimination is very important for these economically propagated crops through cuttings.

15.
Neuron ; 112(9): 1498-1517.e8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38430912

ABSTRACT

Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.


Subject(s)
Empathy , Sex Characteristics , Animals , Male , Female , Mice , Empathy/physiology , Piriform Cortex/physiology , Piriform Cortex/metabolism , Cues , Mice, Inbred C57BL , Affect/physiology , Neurons/physiology , Neurons/metabolism , Behavior, Animal/physiology
16.
J Sep Sci ; 36(15): 2486-95, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23720441

ABSTRACT

Sucrose esters (SEs) were successfully extracted from Oriental tobacco leaves using a new methodology based on accelerated solvent extraction followed by hydrophilic-lipophilic balanced cartridge cleanup step. The SEs were detected by HPLC with ion-trap MS detection using an electrospray interface operated in the positive ion mode. This methodology combines the high efficiency of extraction provided by a pressurized fluid and the highly sensitive characterization offered by ion-trap MS. Under the optimized conditions, 14 SEs were first identified among a total of 23 SEs found in Oriental tobacco leaves. Under the same conditions, only four new SEs were extracted by using traditional ultrasound-assisted extraction and liquid-solid extraction methods. The present method might be potentially useful in high-efficiency extraction and sensitive characterization of SEs from complex matrices such as tobacco leaves.


Subject(s)
Esters/isolation & purification , Nicotiana/chemistry , Plant Leaves/chemistry , Solid Phase Extraction , Sucrose/isolation & purification , Chromatography, High Pressure Liquid/instrumentation , Mass Spectrometry/instrumentation , Solid Phase Extraction/instrumentation , Solvents/chemistry
17.
Sci Bull (Beijing) ; 68(19): 2268-2284, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37666722

ABSTRACT

Metabolomics is a nascent field of inquiry that emerged in the late 20th century. It encompasses the comprehensive profiling of metabolites across a spectrum of organisms, ranging from bacteria and cells to tissues. The rapid evolution of analytical methods and data analysis has greatly accelerated progress in this dynamic discipline over recent decades. Sophisticated techniques such as liquid chromatograph mass spectrometry (MS), gas chromatograph MS, capillary electrophoresis MS, and nuclear magnetic resonance serve as the cornerstone of metabolomic analysis. Building upon these methods, a plethora of modifications and combinations have emerged to propel the advancement of metabolomics. Despite this progress, scrutinizing metabolism at the single-cell or single-organelle level remains an arduous task over the decades. Some of the most thrilling advancements, such as single-cell and single-organelle metabolic profiling techniques, offer profound insights into the intricate mechanisms within cells and organelles. This allows for a comprehensive study of metabolic heterogeneity and its pivotal role in multiple biological processes. The progress made in MS imaging has enabled high-resolution in situ metabolic profiling of tissue sections and even individual cells. Spatial reconstruction techniques enable the direct representation of metabolic distribution and alteration in three-dimensional space. The application of novel metabolomic techniques has led to significant breakthroughs in biological and clinical studies, including the discovery of novel metabolic pathways, determination of cell fate in differentiation, anti-aging intervention through modulating metabolism, metabolomics-based clinicopathologic analysis, and surgical decision-making based on on-site intraoperative metabolic analysis. This review presents a comprehensive overview of both conventional and innovative metabolomic techniques, highlighting their applications in groundbreaking biological and clinical studies.

18.
Curr Pharm Des ; 29(28): 2239-2257, 2023.
Article in English | MEDLINE | ID: mdl-37817527

ABSTRACT

BACKGROUND: Despite widespread application of drug-eluting stents in coronary intervention, in-stent restenosis (ISR) is still a daunting complication in clinical practice. Panax notoginseng saponins (PNS) are considered to be effective herb compounds for preventing ISR. OBJECTIVE: This study aimed to elucidate the targets and mechanisms of PNS in ISR prevention using network pharmacology approaches and experimental verification. METHODS: Relevant targets of PNS active compounds were collected from the HERB database and PharmMapper. The ISR-related targets were obtained from the GeneCards database and the Comparative Toxicogenomics Database. The GO and KEGG enrichment analysis was performed using R software. The String database and Cytoscape software were employed to build the PPI and compounds-targets-pathways-disease networks. Finally, Molecular docking performed by Autodock Vina and cellular experiments were used to validate network pharmacology results. RESULTS: There were 40 common targets between PNS targets and ISR targets. GO analysis revealed that these targets focused on multiple ISR-related biological processes, including cell proliferation and migration, cell adhesion, inflammatory response, and anti-thrombosis and so on. The KEGG enrichment results suggested that PNS could regulate multiple signaling pathways to inhibit or delay the development and occurrence of ISR. The molecular docking and cellular experiments results verified the network pharmacology results. CONCLUSION: This study demonstrated that the potential molecular mechanisms of PNS for ISR prevention involved multiple compounds, targets, and pathways. These findings provide a theoretical reference and experimental basis for the clinical application and product development of PNS for the prevention of ISR.


Subject(s)
Coronary Restenosis , Drugs, Chinese Herbal , Panax notoginseng , Saponins , Humans , Coronary Restenosis/drug therapy , Coronary Restenosis/prevention & control , Molecular Docking Simulation , Network Pharmacology , Constriction, Pathologic , Saponins/pharmacology
19.
Infect Drug Resist ; 16: 2601-2609, 2023.
Article in English | MEDLINE | ID: mdl-37152404

ABSTRACT

Background: Carbapenemase-producing Klebsiella pneumoniae is an unprecedented threat to public health, and its detection remains challenging. Analysis of microbial volatile organic compounds (VOCs) may offer a rapid way to determine bacterial antibiotic susceptibility. Purpose: The aim of this study was to explore the VOCs released by carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). Methods: Test bacteria were incubated in trypticase soy broth to the end of exponential growth phase, and imipenem was added in the middle time. Headspace VOCs were concentrated and analyzed using HS-SPME/GC-MS. Results: The compound 3-methyl-1-butanol was found to be a biomarker among the 26 bacterial isolates (10 KPC-positive, 10 NDM-positive, 2 IMP-positive, 2 carbapenemase-negative CRKP, and 2 carbapenem-susceptible K. pneumonoiae). Conclusion: This study explored a promising new strategy for the screening of carbapenemase-producing CRKP strains. Further research with larger sample sizes will potentially accelerate the application of biomarkers in routine microbiology.

20.
Infect Drug Resist ; 16: 2589-2600, 2023.
Article in English | MEDLINE | ID: mdl-37152405

ABSTRACT

Objective: This study aimed to determine the clinical features, risk factors, and effective antimicrobial therapy for Carbapenem-resistant Acinetobacter baumannii (CRAB) bloodstream infection (BSI). Methods: This was a retrospective analysis of data from patients with CRAB bacteremia in a Chinese tertiary hospital between January 2012 and October 2021. Risk factors, predictors of 30-day mortality, and effective antimicrobial therapy for CRAB BSI were identified using logistic and cox regression analyses. Results: Data from 276 patients with Acinetobacter baumannii (AB) BSI were included, of whom 157 (56.9%) had CRAB BSI. The risk factors that were significantly associated with CRAB BSI included previous intensive care unit (ICU) stay (P < 0.001), immunocompromised status (P < 0.001), cephalosporin use (P = 0.014), and fluoroquinolone use (P = 0.007). The 30-day mortality of the CRAB BSI group was 49.7% (78/157). ICU stay after BSI (P = 0.047), sequential organ failure assessment (SOFA) score ≥10 (P < 0.001), and multiple organ failure (MOF) (P = 0.037) were independent predictors of 30-day mortality. Among antibiotic strategies for the treatment of patients with CRAB BSI, we found that definitive regimens containing cefoperazone/sulbactam were superior to those without cefoperazone/sulbactam in reducing the 30-day mortality rate (25.4% vs 53.4%, P = 0.005). After propensity score matching, we observed a significant increase in the 30-day mortality (77.8%vs 33.3%, P = 0.036) in patients receiving tigecycline monotherapy compared to those receiving cefoperazone/sulbactam monotherapy. The mortality rate of patients receiving tigecycline with cefoperazone/sulbactam was also higher than that of patients receiving cefoperazone-sulbactam monotherapy; however, the difference was not significant (28.6%vs 19.0%, P = 0.375). Conclusion: The severity of patient conditions was significantly associated with mortality in patients with CRAB BSI. Those Patients treated with cefoperazone/sulbactam had better clinical prognoses, and tigecycline should be used with caution.

SELECTION OF CITATIONS
SEARCH DETAIL