Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Oral Dis ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39054859

ABSTRACT

OBJECTIVES: This study investigated the role of fibrin on neutrophil extracellular traps (NETs) formation from neutrophils and to elucidate the involvement of mitochondria in NETs formation during periodontitis. MATERIALS AND METHODS: Plasminogen-deficient (Plg-/-) mice were employed to evaluate the effects of fibrin deposition on inflammation, bone resorption, and neutrophil infiltration in periodontal tissues. In addition, in vitro tests evaluated fibrin's impact on neutrophil-driven inflammation. Mitochondrial reactive oxygen species (mtROS) levels within neutrophils were quantified utilizing flow cytometry and immunofluorescence in vitro. Furthermore, the anti-inflammatory properties of the mtROS scavenger, Mito-TEMPO, were confirmed to regulate the NET formation in vitro and in vivo. RESULTS: Plasminogen deficiency resulted in increased fibrin deposition, neutrophil infiltration, inflammatory factors concentration, and alveolar bone resorption in periodontal tissues. After neutrophils were treated by fibrin in vitro, the expression of inflammatory factors, the formation of mtROS, and NETs enriched in mitochondrial DNA (mtDNA) were upregulated, which were reversed by Mito-TEMPO in vitro. Moreover, Mito-TEMPO alleviated inflammation in Plg-/- mice. CONCLUSIONS: This study showed that fibrin deposition in gingiva induced the NET formation in Plg-/- mice, in which the DNA in NETs was from mitochondria depending on increasing mtROS.

2.
Insect Mol Biol ; 32(1): 36-45, 2023 02.
Article in English | MEDLINE | ID: mdl-36093732

ABSTRACT

The intensive application of chlorantraniliprole (CAP) leaves residues in the environment, posing a potential threat to non-target organisms. In the present study, we investigated the adverse effects of sublethal CAP exposure on Bombyx mori. Sublethal CAP (0.02 mg/L) was shown to induce the release of intracellular Ca2+ in BmN cells. Meanwhile, Ca2+ -dependent genes were induced in the midgut at 72 h after CAP (0.01 mg/L) exposure, and damaged mitochondria, autophagosomes, nuclear membrane rupture and condensed chromatin were observed. Moreover, the key genes in the oxidative phosphorylation pathway were significantly down-regulated. The transcript levels of autophagy-related genes ATG6 and ATG8 were significantly up-regulated, and the protein levels of LC3-II and ATG7 were significantly increased by 3.72- and 3.33-fold, respectively. Additionally, the transcript levels of the upstream genes in the apoptosis pathway (calpain and Apaf-1) were significantly up-regulated, the protein levels of the downstream gene caspase 3 and its cleaved form were significantly up-regulated by 1.97- and 4.55-fold, respectively, consistent with the elevated caspase 3 activity at 72 h. Collectively, these findings demonstrate that intracellular Ca2+ release induced by sublethal CAP inhibits oxidative phosphorylation pathway, which causes mitochondrial dysfunction, leading to autophagy and apoptosis in the midgut of B. mori.


Subject(s)
Bombyx , Animals , Bombyx/metabolism , Caspase 3/metabolism , Caspase 3/pharmacology , Calcium/metabolism , Calcium/pharmacology , Autophagy , Apoptosis , Homeostasis
3.
Arch Insect Biochem Physiol ; 113(3): e22019, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37096338

ABSTRACT

The silkworm (Bombyx mori) is an economically important insect and serves as a model organism for Lepidoptera. To investigate the effects of the intestinal microbial population on the growth and development of larvae fed an artificial diet (AD) during the young stages, we analyzed the characteristics of the intestinal microbial population using 16S rRNA gene sequencing technology. Our results revealed that the intestinal flora of the AD group tended to be simple by the 3rd-instar, which Lactobacillus accounting for 14.85% and leading to a decreased pH in the intestinal fluid. In contrast, the intestinal flora of silkworms in the mulberry leaf (ML) group showed continuous growth of diversity, with Proteobacteria accounting for 37.10%, Firmicutes accounting for 21.44%, and Actinobacteria accounting for 17.36%. Additionally, we detected the activity of intestinal digestive enzymes at different instars and found that the activity of digestive enzymes in the AD group increased by larval instar. Protease activity in the AD group was lower during the 1st- to 3rd-instars compared to the ML group, while α-amylase and lipase activities were significantly higher in the AD group during the 2nd- and 3rd-instar compared to the ML group. Furthermore, our experimental results indicated that changes in the intestinal population decreased the pH and affected the activity of proteases, which might contribute to the slower growth and development of larvae in the AD group. In summary, this study provides a reference for investigating the relationship between artificial diet and intestinal flora balance.


Subject(s)
Bombyx , Morus , Animals , Bombyx/genetics , RNA, Ribosomal, 16S/genetics , Plant Breeding , Bacteria , Morus/genetics , Larva , Diet
4.
Arch Insect Biochem Physiol ; 112(3): e21990, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36537163

ABSTRACT

Glyphosate is a widely used herbicide and crop desiccant. However, whether its extensive use has any effect on the species diversity of nontarget organisms is still unclear. In this study, we used the silkworm, Bombyx mori, as the research subject, and performed RNA sequencing to analyze the transcriptional profile of silkworm midgut after exposure to glyphosate at 2975.20 mg/L (a concentration commonly used at mulberry fields). A total of 125 significantly differentially expressed genes (DEGs) were detected in the midgut of glyphosate-exposed silkworm (q < 0.05), of which 53 were upregulated and 72 were downregulated. Gene ontology enrichment analysis showed that the DEGs were mainly enriched in biological process, cellular component, and molecular function. Kyoto encyclopedia of genes and genomes analysis showed that the differential genes were mainly related to oxidative stress, nutrient metabolism, and immune defense pathways, including oxidative stress-related Cat and Jafrac1, nutrient metabolism-related Fatp and Scpx, and immune-related CYP6AN2, UGT40B4, CTL11, serpin-2, and so forth. Experimental verification showed that glyphosate exposure led to a 4.35-fold increase in the mortality of silkworm after Beauveria bassiana infection, which might be caused by the decreased PO (phenoloxidase) activity and impaired immunity. These results provide evidence for the potential effects of residue glyphosate on the physiological functions of silkworm, and also provide a reference for the biosafety evaluation of glyphosate.


Subject(s)
Bombyx , Gene Expression Profiling , Animals , Gene Expression Profiling/methods , Bombyx/genetics , Transcription, Genetic , Immunity , Glyphosate
5.
Arch Insect Biochem Physiol ; 113(2): e22011, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36938839

ABSTRACT

Changes in both intake and digestion of feed have been demonstrated in the host following parasitization. However, its regulatory mechanism has not been clarified. In this study, silkworms and Exorista japonica were used as research objects to analyze the effect of parasitism on the midgut immune system of the silkworm. After being parasitized, the expressions of antimicrobial peptide (AMP) genes of silkworms showed a fluctuating trend of first upregulation and then downregulation, while phenoloxidase and lysozyme activities were inhibited. To study the possible impact of the downregulation of AMP genes on intestinal microorganisms, the characteristics of the intestinal microbial population of silkworms on the third day of parasitism were analyzed. The relative abundance of Firmicutes, Proteobacteria, and Bacteroidota decreased, while that of Actinobacteriota increased. The increased abundance of conditionally pathogenic bacteria Serratia and Staphylococcus might lead to a decrease in the amount of silkworm ingestion. Meanwhile, the abundance of Acinetobacter, Bacillus, Pseudomonas, and Enterobacter promotes an increase in the digestion of nutrients. This study indicated that the imbalance of intestinal microbial homeostasis caused by parasitism may affect the absorption and digestion of nutrients by the host. Collectively, our findings provided a new clue for further exploring the mechanism of nutrient transport among the host, parasitoid, and intestinal microorganisms.


Subject(s)
Bombyx , Diptera , Gastrointestinal Microbiome , Animals , Bombyx/metabolism , Bacteria , Diet
6.
Pestic Biochem Physiol ; 193: 105430, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37248008

ABSTRACT

Chlorantraniliprole (CAP) is widely used in pest control, and its environmental residues affect the disease resistance of non-target insect silkworms. Studies have demonstrated that changes in gut microbial communities of insects are associated with susceptibility to pathogens. In the present study, we examined the effects of CAP exposure on the immune system and gut microbial community structure of silkworms. The results showed that after 96 h of exposure to low-concentration CAP, the peritrophic matrix (PM) of silkworm larvae was disrupted, and pathogenic bacteria invaded hemolymph. The trehalase activity in the midgut was significantly decreased, while the activities of chitinase, ß-N-acetylglucosaminidase, and chitin deacetylase were increased considerably, resulting in decreased chitin content in PM. In addition, exposure to CAP reduced the expressions of key genes in the Toll, IMD, and JAK/STAT pathways, ultimately leading to the downregulation of antimicrobial peptides (AMPs) genes and alterations in the structure of the gut microbial community. Therefore, after infection with the conditional pathogen Enterobacter cloacae (E. cloacae), CAP-exposed individuals exhibited significantly lower body weight and higher mortality. These findings showed that exposure to low-concentration CAP impacted the biological defense system of silkworms, changed the gut microbial community structure, and increased silkworms' susceptibility to bacterial diseases. Collectively, these findings provided a new perspective for the safety evaluation of low-concentration CAP exposure in sericulture.


Subject(s)
Bacterial Infections , Bombyx , Animals , Larva , Chitin , Insect Proteins/genetics , Insect Proteins/metabolism
7.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068875

ABSTRACT

Melatonin has been proved to be involved in testosterone synthesis, but whether melatonin participates in testosterone synthesis by regulating miRNA in Leydig cells is still unclear. The purpose of this study is to clarify the mechanism of melatonin on Leydig cells testosterone synthesis from the perspective of miRNA. Our results showed that melatonin could significantly inhibit testosterone synthesis in rooster Leydig cells. miR-7481-3p and CXCL14 were selected as the target of melatonin based on RNA-seq and miRNA sequencing. The results of dual-luciferase reporter assays showed that miR-7481-3p targeted the 3'-UTR of CXCL14. The overexpression of miR-7481-3p significantly inhibited the expression of CXCL14 and restored the inhibitory role of melatonin testosterone synthesis and the expression of StAR, CYP11A1, and 3ß-HSD in rooster Leydig cells. Similarly, interference with CXCL14 could reverse the inhibitory effect of melatonin on the level of testosterone synthesis and the expression of StAR, CYP11A1, and 3ß-HSD in rooster Leydig cells. The RNA-seq results showed that melatonin could activate the PI3K/AKT signal pathway. Interference with CXCL14 significantly inhibited the phosphorylation level of PI3K and AKT, and the inhibited PI3K/AKT signal pathway could reverse the inhibitory effect of CXCL14 on testosterone synthesis and the expression of StAR, CYP11A1 and 3ß-HSD in rooster Leydig cells. Our results indicated that melatonin inhibits testosterone synthesis by targeting miR-7481-3p/CXCL14 and inhibiting the PI3K/AKT pathway.


Subject(s)
Leydig Cells , Melatonin , MicroRNAs , Testosterone , Animals , Male , Chickens/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Leydig Cells/metabolism , Melatonin/pharmacology , Melatonin/metabolism , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Testosterone/metabolism
8.
Pestic Biochem Physiol ; 188: 105223, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36464330

ABSTRACT

Chlorantraniliprole (CAP) is widely used in the control of agricultural pests, and its residues can affect the formation of silkworm (Bombyx. mori) cocoon easily. To accurately evaluate the toxicity of CAP to silkworms and clarify the mechanism of its effect on silk gland function, we proposed a novel toxicity evaluation method based on the body weight changes after CAP exposure. We also analyzed the Ca2+-related ATPase activity, characterized energy metabolism and transcriptional changes about the autophagy key genes on the downstream signaling pathways. The results showed that after a low concentration of CAP exposed for 96 h, there were CAP residues in the silk glands of B. mori, the activities of Ca2+-ATPase and Ca2+-Mg2+-ATPase decreased significantly (P ≤ 0.01), and the activation of AMPK-related genes AMPK-α and AMPK-ß were up-regulated by 6.39 ± 0.02-fold and 12.33 ± 1.06-fold, respectively, reaching a significant level (P ≤ 0.01)). In addition, the autophagy-related genes Atg1, Atg6, Atg5, Atg7, and Atg8 downstream AMPK were significantly up-regulated at 96 h (P ≤ 0.05). The results of immunohistochemistry and protein expression assay for autophagy marker Atg8 further confirmed the occurrence of autophagy. Overall, our results indicate that CAP exposure leads to autophagy in the silk gland of B. mori and affects their physiological functions, which provides guidance for the evaluation of toxicity of low concentration environmental CAP residues to insects.


Subject(s)
Bombyx , Animals , AMP-Activated Protein Kinases/genetics , Autophagy , Adenosine Triphosphatases , Silk
9.
Sensors (Basel) ; 22(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36146416

ABSTRACT

In this paper, a parameter sensitivity analysis of mounting pedestals and a multi-objective optimization design for vibration reduction in a multi-support rigid body system, taking an aeroengine-lubricating oil tank supported by multiple mounting pedestals as an example, are conducted based on the third version of non-dominated sorting genetic algorithm (NSGA-Ⅲ) combined with Sobol's sensitivity analysis method (SSAM). An aeroengine-lubricating oil tank with three mounting pedestals is simplified as a three-support dynamic system, and its dynamics model is established. Several structural parameters of mounting pedestals are taken as the design variables, and the system vibration response and the reaction force of the front and rear mounting pedestals are considered as the objective functions. The first-order results and total sensitivity index of different design parameters for each objective function are obtained via SSAM, and the five most sensitive parameters are selected. Based on the above five design parameters, multi-objective optimization designing for vibration reduction in a simplified lubricating oil tank system is conducted based on NSGA-Ⅲ, and the results of the above triple-objective optimization are obtained as a Pareto-front surface with an obvious frontier. It can be observed from the simulation results that the oil tank vibration of the optimized system is effectively suppressed under the unbalanced excitation of two typical engine speeds. The established method and the main results can provide guidance for designers of aeroengine external structural systems, which can help to achieve superior system dynamic performances in engineering applications.

10.
J Anim Physiol Anim Nutr (Berl) ; 106(5): 1086-1096, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34569089

ABSTRACT

Photoperiod is an important factor that stimulates the reproductive performance of broiler breeder roosters. However, the mechanism by which photoperiod affects the reproductive performance of broiler breeder roosters has not been fully studied. To study the effects of different photoperiods on the reproductive performance of broiler breeder roosters, 120 Arbor Acres broiler breeder roosters aged 20 weeks were randomly assigned to three groups (n = 40), and the three groups were treated with different photoperiod regimes: control (CTR; 12.5 h of light and 11.5 h of dark, 12.5 L: 11.5 D), short day (SD; 16 L: 8 D) and long day (LD; 8 L: 16 D). Serum and testes were collected after 4 weeks of feeding, and testosterone-related indices were detected. We found that testosterone synthesis in the testes of broiler roosters was boosted with prolonged of photoperiod. Subsequently, metabonomics was used to identify the differential endogenous metabolites that may affect the function of the testes in breeder roosters. We found compared with other groups, the concentrations of creatine, uridine monophosphate, phosphoribosyl pyrophosphate, dCMP, α-D-glucose and citric acid in the SD group decreased significantly (p < 0.05), and glyoxylic acid, D-ribose 5-phosphate, deoxyuridine and orotic acid in the SD group increased significantly (p < 0.05), while the CTR group and LD group showed no significant difference (p > 0.05). The concentrations of linoleic acid and α-linolenic acid in the LD group were increased significantly (p < 0.05) than those in the CTR and SD groups. Compared with the CTR group, the concentrations of histamine in the SD and LD groups were significant increased (p < 0.05). The 13 of the different metabolites could be used as candidate biomarkers for different photoperiods affecting testosterone synthesis, may be used to molecular breeding of high reproductive performance broiler roosters.


Subject(s)
Semen Analysis , Testis , Animals , Chickens , Chromatography, Liquid/veterinary , Male , Photoperiod , Semen Analysis/veterinary , Tandem Mass Spectrometry/veterinary , Testosterone
11.
Arch Insect Biochem Physiol ; 107(4): e21827, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34173258

ABSTRACT

Silkworm (Bombyx mori) is an important economic insect and an attractive model system. A series of autophagy-related genes (Atgs) are involved in the autophagic process, and these Atgs have been proved to play important roles in the development. Atg7 stands at the hub of two ubiquitin-like systems involving Atg8 and Atg12 in the autophagic vesicle. In the present study, we cloned and characterized a BmAtg7 gene in Bombyx mori. The open reading frame (ORF) of BmAtg7 was 1908 bp in length, and it encoded a polypeptide of 635 amino acids. BmAtg7 was highly expressed in the posterior silk gland, fatbody, and epidermis. The expression profile of BmAtg7 in the fatbody showed an increasing tendency from day 1 of the 5th instar to the prepupal stage. After chlorantraniliprole (CAP) exposure, the transcriptional level of BmAtg7 was continuously decreased. After depletion of BmAtg7 by RNAi, the expressions of BmAtg7, BmAtg8, and BmEcr were all downregulated, while the expression of BmJHBP2 was upregulated. However, depletion of BmAtg7 did not prevent the metamorphosis of silkworm from larvae to pupae, while the occurrence of such process was delayed. After the 20-hydroxyecdysone (20E) treatment, the expression characteristics of these four genes (BmAtg7, BmAtg8, BmEcr and BmJHBP2) were contrary to the results after depletion of BmAtg7. Our results suggested that although CAP exposure could significantly inhibit the expression of BmAtg7 continuously, the changes of BmAtg7 was not the key factor in CAP-induced metamorphosis defects.


Subject(s)
Autophagy-Related Protein 7/genetics , Bombyx/genetics , Amino Acid Sequence , Animals , Autophagy-Related Protein 7/metabolism , Bombyx/metabolism , Cloning, Molecular , Ecdysterone , ortho-Aminobenzoates
12.
Pestic Biochem Physiol ; 174: 104824, 2021 May.
Article in English | MEDLINE | ID: mdl-33838717

ABSTRACT

Acetamiprid is a new type of nicotinic insecticide that is widely used in pest control. Its environmental residues may cause silkworm cocooning disorder. In this study, silkworms that received continuous feeding of low concentration acetamiprid (0.15 mg/L) showed significantly decreased silk gland index and cocooning rate. Gene expression profiling of posterior silk glands (PSGs) revealed that the differentially expressed genes were significantly enriched in oxidative stress-related signal pathways with significant up-regulation. The contents of both H2O2 and MDA were increased, along with significantly elevated SOD and CAT activities, all of which reached maximal values at 48 h when H2O2 and MDA's contents were 10.46 and 7.98 nmol/mgprot, respectively, and SOD and CAT activities were 5.51 U/mgprot and 33.48 U/gprot, respectively. The transcription levels of antioxidant enzyme-related genes SOD, Mn-SOD, CuZn-SOD, CAT, TPX and GPX were all up-regulated, indicating that exposure to low concentration acetamiprid led to antioxidant response in silkworm PSG. The key genes in the FoxO/CncC/Keap1 signaling pathway that regulates antioxidant enzyme activity, FoxO, CncC, Keap1, NQO1, HO-1 and sMaf were all up-regulated during the whole process of treatment, with maximal values being reached at 72 h with 2.91, 1.46, 1.82, 2.52, 2.32 and 4.01 times of increases, respectively. These results demonstrate that exposure to low concentration acetamiprid causes oxidative stress in silkworm PSG, which may be the cause of cocooning disorder in silkworm. Our study provides a reference for the safety evaluation of environmental residues of acetamiprid on non-target insects.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Bombyx/metabolism , Growth and Development , Hydrogen Peroxide , Insect Proteins/genetics , Insect Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/metabolism , Neonicotinoids , Oxidative Stress , Silk
13.
Phys Chem Chem Phys ; 21(23): 12704-12705, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31157337

ABSTRACT

Correction for 'Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system' by Tariq Allie-Ebrahim et al., Phys. Chem. Chem. Phys., 2017, 19, 16071-16077.

14.
Nitric Oxide ; 78: 51-59, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29787802

ABSTRACT

A simple diffusion cell was made to measure the permeability and diffusivity of Nitric Oxide in human plasma and red cells. Nitric oxide was passed through the cell containing plasma or nitrited red cells enclosed by silicone membranes. Steady state permeability (αNODNO ) was calculated from the cell dimensions and from the NO bulk flow entering and leaving the cell. The diffusion coefficient (DNO) was calculated in three ways: (i) by dividing the steady state permeability by published values for solubility (αNO ) in water at 26 °C and 37 °C (ii) by a numerical method and (iii) by an analytical method. Mean steady state permeability (95% confidence intervals) were plasma (26 °C) 5.57 × 10-11 (2.35 × 10-11-1.32 × 10-10) and (37 °C) 5.48 × 10-11 (2.13 × 10-11-1.41 × 10-10) mol cm-1 s-1 atm-1 and red cells (26 °C) 6.74 × 10-12 (1.29 × 10-12-3.53 × 10-11) and (37 °C) 3.93 × 10-11 (1.39 × 10-11-1.11.10-10) mol cm-1 s-1 atm-1. Median Diffusion Coefficients (DNO) for plasma at 37 °C ranged from 3-3.36 × 10-5 cm2 s-1 and red cells 2.41-2.94 × 10-5 cm2 s-1 depending on the method used. These values may be used for modelling NO transport in vivo in the human lung and capillary. Parameters used for modelling in vivo should be measured at 37 °C.


Subject(s)
Cell Membrane Permeability , Diffusion , Erythrocytes/metabolism , Nitric Oxide/blood , Nitric Oxide/metabolism , Erythrocyte Membrane/metabolism , Humans
15.
Phys Chem Chem Phys ; 20(27): 18436-18446, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29947382

ABSTRACT

Diffusion plays a central part in many unit operations. The Maxwell-Stefan model is the dominant model for both gaseous and liquid diffusion. However, it was developed from the kinetic theory of gases, raising the question of whether it can be extended to non-ideal liquid systems. The dynamic fluctuation model is an alternative model based on the Cussler theory and predicts a smaller thermodynamic influence relative to the linear influence of the Maxwell-Stefan model due to dynamic concentration fluctuations. Since the dynamic fluctuation model, which uses the scaling factor α, had improved performance relative to the Maxwell-Stefan model for a wide range of binary systems, it is postulated that this improved performance should also be observed for a ternary system. In this work, the dynamic molecular fluctuation model was extended to a highly non-ideal ternary system, using the same scaling factor α, through matrix manipulation. Using self-diffusion data measured by NMR, mutual diffusion predictions of the developed model and the Maxwell-Stefan model were compared to experimental mutual diffusion data of the partially miscible system ethanol/toluene/n-decane. It is demonstrated that the dynamic fluctuation model gives improved predictions relative to the Maxwell-Stefan approach, consistent with previous observations on binary systems, showing that the reduced thermodynamic influence of the dynamic fluctuation model is an improvement. In addition, we show that the use of local mole fractions, to account for molecular association, in both the dynamic fluctuation and Maxwell-Stefan models, results in improved diffusion predictions for the ternary system. The results confirm that the dynamic fluctuation model improves predictions of mutual diffusion in liquid mixtures, suggesting a non-linear correction to the thermodynamic correction factor. The results also suggest that that the key assumptions in the Maxwell-Stefan model and its derivation, rooted in the kinetic theory of gases, are not entirely accurate for highly non-ideal liquid systems. The optimum α for the ternary system studied here is approximately 0.45, similarly to the optimum α of 0.40 to 0.80 for a range of binary systems previously studied, suggesting that the use of the α scaling factor, which is grounded in scaling laws theory, is of general validity.

16.
Phys Chem Chem Phys ; 19(24): 16071-16077, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28597898

ABSTRACT

The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive MD simulations.

17.
J Gen Virol ; 96(9): 2522-2530, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25998916

ABSTRACT

Live-attenuated influenza vaccines (LAIVs) are now available for the prevention of influenza, with LAIV strains generally derived from serial passage in cultures or by reverse genetics (RG). The receptor-binding domain (RBD) in haemagglutinin (HA) of influenza virus is responsible for viral binding to the avian-type 2,3-α-linked or human-type 2,6-α-linked sialic acid receptor; however, the virulence determinants in the RBD of H5N1 virus remain largely unknown. In the present study, serial passage of H5N1 virus A/Vietnam/1194/2004 in Madin-Darby canine kidney cells resulted in the generation of adapted variants with large-plaque morphology, and genomic sequencing of selected variants revealed two specific amino acid substitutions (K193E and G225E) in the RBD. RG was used to generate H5N1 viruses containing either single or double substitutions in HA. The RG virus containing K193E and G225E mutations (rVN-K193E/G225E) demonstrated large-plaque morphology, enhanced replication and genetic stability after serial passage, without changing the receptor-binding preference. Importantly, in vivo virulence assessment demonstrated that rVN-K193E/G225E was significantly attenuated in mice. Microneutralization and haemagglutination inhibition assays demonstrated that immunization with rVN-K193E/G225E efficiently induced a robust antibody response against WT H5N1 virus in mice. Taken together, our experiments demonstrated that K193E and G225E mutations synergistically attenuated H5N1 virus without enhancing the receptor-binding avidity, and that the RG virus rVN-K193E/G225E represents a potential H5N1 LAIV strategy that deserves further development. These findings identify the RBD as a novel attenuation target for live vaccine development and highlight the complexity of RBD interactions.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/virology , Mutation, Missense , Animals , Antibodies, Viral , Dogs , Female , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Immunization , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/immunology , Mice , Mice, Inbred BALB C , Protein Structure, Tertiary , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Vaccines
18.
J Virol ; 88(1): 725-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24131718

ABSTRACT

Highly pathogenic avian influenza H5N1 virus clades 2.3.4, 2.3.2, and 7 are the dominant cocirculating H5N1 viruses in poultry in China. However, humans appear to be clinically susceptible mostly to the 2.3.4 virus clade. Here, we demonstrated that A549 cells and human macrophages infected with clade 2.3.4 viruses produced significantly more viruses than those infected with the other two clades. Likewise, clade 2.3.4-infected macrophages caused the most severe cellular damage and strongest proinflammatory response.


Subject(s)
Immunity, Innate , Influenza A Virus, H5N1 Subtype/physiology , Virus Replication , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/pathogenicity
19.
J Med Virol ; 87(11): 1816-22, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26089289

ABSTRACT

The highly pathogenic H5N1 avian influenza virus is one of the greatest influenza pandemic threats since 2003. The association of the receptor binding domain (RBD) with the virulence of influenza virus is rarely addressed, particularly of H5N1 influenza viruses. In this study, BALB/c mice were intranasally infected with A/Vietnam/1194/2004 (VN1194, H5N1). The mouse lung-adapted variants were isolated and the mutation of E190G (H3 numbering) in the RBD was recognized. The recombinant virus, rVN-E190G carrying E190G in hemagglutinin (HA) was designed and rescued using reverse genetics techniques. The receptor binding activity, growth curve and pathogenicity in mice of the rVN-E190G were investigated. Results demonstrated that rVN-E190G virus increased the binding avidity to α2,6 SA (sialic acid) and reduced the affinity to α2,3 SA, meanwhile weakened the viral replication in vitro. Moreover, the virulence assessment demonstrated that rVN-E190G was attenuated in mice. These results indicated that the mutation E190G in HA decreases H5N1 viral replication in vitro and significantly attenuates virulence in vivo. These findings identify one of the determinants in RBD which can be associated with H5N1 virulence in mice.


Subject(s)
Adaptation, Biological , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Mutation, Missense , Virulence Factors/genetics , Animals , Body Weight , Female , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Lung/virology , Mice, Inbred BALB C , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Survival Analysis , Viral Load , Viral Plaque Assay , Virulence , Virus Attachment , Virus Replication
20.
BMC Microbiol ; 14: 271, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25394781

ABSTRACT

BACKGROUND: The emerged human infection with avian influenza A (H7N9) virus in China since 2013 has aroused global concerns. There is great demand for simple and rapid diagnostic method for early detection of H7N9 to provide timely treatment and disease control. The aim of the current study was to develop a rapid, accurate and feasible reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for detection of H7N9 virus. RESULTS: The detection limits of the H7- and N9-specific RT-LAMP assay were both approximately 0.2 PFU per reaction. No cross-reactivity was observed with other subtype of influenza viruses or common respiratory viral pathogens. The assay worked well with clinical specimens from patients and chickens, and exhibited high specificity and sensitivity. CONCLUSIONS: The H7/N9 specific RT-LAMP assay was sensitive and accurate, which could be a useful alternative in clinical diagnostics of influenza A (H7N9) virus, especially in the hospitals and laboratories without sophisticated diagnostic systems.


Subject(s)
Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza in Birds/diagnosis , Influenza, Human/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Animals , Chickens , China , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/virology , Influenza, Human/virology , Sensitivity and Specificity , Virology/methods
SELECTION OF CITATIONS
SEARCH DETAIL