Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 900
Filter
Add more filters

Publication year range
1.
Nature ; 608(7921): 62-68, 2022 08.
Article in English | MEDLINE | ID: mdl-35922499

ABSTRACT

Additive manufacturing produces net-shaped components layer by layer for engineering applications1-7. The additive manufacture of metal alloys by laser powder bed fusion (L-PBF) involves large temperature gradients and rapid cooling2,6, which enables microstructural refinement at the nanoscale to achieve high strength. However, high-strength nanostructured alloys produced by laser additive manufacturing often have limited ductility3. Here we use L-PBF to print dual-phase nanolamellar high-entropy alloys (HEAs) of AlCoCrFeNi2.1 that exhibit a combination of a high yield strength of about 1.3 gigapascals and a large uniform elongation of about 14 per cent, which surpasses those of other state-of-the-art additively manufactured metal alloys. The high yield strength stems from the strong strengthening effects of the dual-phase structures that consist of alternating face-centred cubic and body-centred cubic nanolamellae; the body-centred cubic nanolamellae exhibit higher strengths and higher hardening rates than the face-centred cubic nanolamellae. The large tensile ductility arises owing to the high work-hardening capability of the as-printed hierarchical microstructures in the form of dual-phase nanolamellae embedded in microscale eutectic colonies, which have nearly random orientations to promote isotropic mechanical properties. The mechanistic insights into the deformation behaviour of additively manufactured HEAs have broad implications for the development of hierarchical, dual- and multi-phase, nanostructured alloys with exceptional mechanical properties.

2.
EMBO J ; 41(16): e110636, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35638332

ABSTRACT

Activation of the T-cell antigen receptor (TCR)-CD3 complex is critical to induce the anti-tumor response of CD8+ T cells. Here, we found that disulfiram (DSF), an FDA-approved drug previously used to treat alcohol dependency, directly activates TCR signaling. Mechanistically, DSF covalently binds to Cys20/Cys23 residues of lymphocyte-specific protein tyrosine kinase (LCK) and enhances its tyrosine 394 phosphorylation, thereby promoting LCK kinase activity and boosting effector T cell function, interleukin-2 production, metabolic reprogramming, and proliferation. Furthermore, our in vivo data revealed that DSF promotes anti-tumor immunity against both melanoma and colon cancer in mice by activating CD8+ T cells, and this effect was enhanced by anti-PD-1 co-treatment. We conclude that DSF directly activates LCK-mediated TCR signaling to induce strong anti-tumor immunity, providing novel molecular insights into the therapeutic effect of DSF on cancer.


Subject(s)
Disulfiram , Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Animals , CD8-Positive T-Lymphocytes , Disulfiram/pharmacology , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Mice , Phosphorylation , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
3.
Nature ; 574(7777): 223-227, 2019 10.
Article in English | MEDLINE | ID: mdl-31597974

ABSTRACT

High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions1,2. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties3-8. Rational design of such alloys hinges on an understanding of the composition-structure-property relationships in a near-infinite compositional space9,10. Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy2 and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves11,12 as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties.

4.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35012985

ABSTRACT

Materials containing heterogeneous nanostructures hold great promise for achieving superior mechanical properties. However, the strengthening effect due to plastically inhomogeneous deformation in heterogeneous nanostructures has not been clearly understood. Here, we investigate a prototypical heterogeneous nanostructured material of gradient nanotwinned (GNT) Cu to unravel the origin of its extra strength arising from gradient nanotwin structures relative to uniform nanotwin counterparts. We measure the back and effective stresses of GNT Cu with different nanotwin thickness gradients and compare them with those of homogeneous nanotwinned Cu with different uniform nanotwin thicknesses. We find that the extra strength of GNT Cu is caused predominantly by the extra back stress resulting from nanotwin thickness gradient, while the effective stress is almost independent of the gradient structures. The combined experiment and strain gradient plasticity modeling show that an increasing structural gradient in GNT Cu produces an increasing plastic strain gradient, thereby raising the extra back stress. The plastic strain gradient is accommodated by the accumulation of geometrically necessary dislocations inside an unusual type of heterogeneous dislocation structure in the form of bundles of concentrated dislocations. Such a heterogeneous dislocation structure produces microscale internal stresses leading to the extra back stress in GNT Cu. Altogether, this work establishes a fundamental connection between the gradient structure and extra strength in GNT Cu through the mechanistic linkages of plastic strain gradient, heterogeneous dislocation structure, microscale internal stress, and extra back stress. Broadly, this work exemplifies a general approach to unraveling the strengthening mechanisms in heterogeneous nanostructured materials.

5.
J Physiol ; 602(6): 1175-1197, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38431908

ABSTRACT

Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.


Subject(s)
Brain Ischemia , Reperfusion Injury , Selenium , Stroke , Transcranial Direct Current Stimulation , Rats , Animals , Brain Ischemia/therapy , Brain Ischemia/metabolism , Neuroprotection/physiology , Vesicle-Associated Membrane Protein 2 , Selenoprotein P , Oxygen/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Glucose/metabolism , Qa-SNARE Proteins
6.
Neurobiol Dis ; 190: 106375, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092269

ABSTRACT

Patients with chronic pain often experience memory impairment, but the underlying mechanisms remain elusive. The myelin sheath is crucial for rapid and accurate action potential conduction, playing a pivotal role in the development of cognitive abilities in the central nervous system. The study reveals that myelin degradation occurs in the hippocampus of chronic constriction injury (CCI) mice, which display both chronic pain and memory impairment. Using fiber photometry, we observed diminished task-related neuronal activity in the hippocampus of CCI mice. Interestingly, the repeated administration with clemastine, which promotes myelination, counteracts the CCI-induced myelin loss and reduced neuronal activity. Notably, clemastine specifically ameliorates the impaired memory without affecting chronic pain in CCI mice. Overall, our findings highlight the significant role of myelin abnormalities in CCI-induced memory impairment, suggesting a potential therapeutic approach for treating memory impairments associated with neuropathic pain.


Subject(s)
Chronic Pain , Clemastine , Humans , Animals , Mice , Clemastine/metabolism , Chronic Pain/drug therapy , Chronic Pain/metabolism , Myelin Sheath/metabolism , Central Nervous System , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Hippocampus/metabolism
7.
BMC Med ; 22(1): 224, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831391

ABSTRACT

BACKGROUND: Type 2 diabetes is associated with a variety of complications, including micro- and macrovascular complications, neurological manifestations and poor wound healing. Adhering to a Mediterranean Diet (MED) is generally considered an effective intervention in individuals at risk for type 2 diabetes mellitus (T2DM). However, little is known about its effect with respect to the different specific manifestations of T2DM. This prompted us to explore the effect of MED on the three most significant microvascular complications of T2DM: diabetic retinopathy (DR), diabetic kidney disease (DKD), and vascular diabetic neuropathies (DN). METHODS: We examined the association between the MED and the incidence of these microvascular complications in a prospective cohort of 33,441 participants with hyperglycemia free of microvascular complications at baseline, identified in the UK Biobank. For each individual, we calculated the Alternate Mediterranean Diet (AMED) score, which yields a semi-continuous measure of the extent to which an individual's diet can be considered as MED. We used Cox proportional hazard models to analyze hazard ratios (HRs) and 95% confidence intervals (CIs), adjusting for demographics, lifestyle factors, medical histories and cardiovascular risk factors. RESULTS: Over a median of 12.3 years of follow-up, 3,392 cases of microvascular complications occurred, including 1,084 cases of diabetic retinopathy (DR), 2,184 cases of diabetic kidney disease (DKD), and 632 cases of diabetic neuropathies (DN), with some patients having 2 or 3 microvascular complications simultaneously. After adjusting for confounders, we observed that higher AMED scores offer protection against DKD among participants with hyperglycemia (comparing the highest AMED scores to the lowest yielded an HR of 0.79 [95% CIs: 0.67, 0.94]). Additionally, the protective effect of AMED against DKD was more evident in the hyperglycemic participants with T2DM (HR, 0.64; 95% CI: 0.50, 0.83). No such effect, however, was seen for DR or DN. CONCLUSIONS: In this prospective cohort study, we have demonstrated that higher adherence to a MED is associated with a reduced risk of DKD among individuals with hyperglycemia. Our study emphasizes the necessity for continued research focusing on the benefits of the MED. Such efforts including the ongoing clinical trial will offer further insights into the role of MED in the clinical management of DKD.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Diet, Mediterranean , Hyperglycemia , Humans , Prospective Studies , Male , Female , Middle Aged , Diabetic Nephropathies/diet therapy , Diabetic Nephropathies/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/diet therapy , Aged , Hyperglycemia/epidemiology , Hyperglycemia/complications , Adult , United Kingdom/epidemiology , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/diet therapy , Incidence , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/diet therapy , Risk Factors
8.
Small ; : e2402654, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830339

ABSTRACT

Constructing a built-in interfacial electric field (BIEF) is an effective approach to enhance the electrocatalysts performance, but it has been rarely demonstrated for electrochemical carbon dioxide reduction reaction (CO2RR) to date. Herein, for the first time, SnO2/LaOCl nanofibers (NFs) with BIEF is created by electrospinning, exhibiting a high Faradaic efficiency (FE) of 100% C1 product (CO and HCOOH) at -0.9--1.1 V versus reversible hydrogen electrode (RHE) and a maximum FEHCOOH of 90.1% at -1.2 VRHE in H-cell, superior to the commercial SnO2 nanoparticles (NPs) and LaOCl NFs. SnO2/LaOCl NFs also exhibit outstanding stability, maintaining negligible activity degradation even after 10 h of electrolysis. Moreover, their current density and FEHCOOH are almost 400 mA cm-2 at -2.31 V and 83.4% in flow-cell. The satisfactory CO2RR performance of SnO2/LaOCl NFs with BIEF can be ascribed to tight interface of coupling SnO2 NPs and LaOCl NFs, which can induce charge redistribution, rich active sites, enhanced CO2 adsorption, as well as optimized Gibbs free energy of *OCHO. The work reveals that the BIEF will trigger interfacial accumulation and stability enhancement effects in promoting CO2RR activity and stability of SnO2-based materials, providing a novel approach to develop stable and efficient CO2RR electrocatalysts.

9.
Nat Mater ; 22(6): 710-716, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37081170

ABSTRACT

Hydrogen embrittlement jeopardizes the use of high-strength steels in critical load-bearing applications. However, uncertainty regarding how hydrogen affects dislocation motion, owing to the lack of quantitative experimental evidence, hinders our understanding of hydrogen embrittlement. Here, by studying the well-controlled, cyclic, bow-out motions of individual screw dislocations in α-iron, we find that the critical stress for initiating dislocation motion in a 2 Pa electron-beam-excited H2 atmosphere is 27-43% lower than that in a vacuum environment, proving that hydrogen enhances screw dislocation motion. Moreover, we find that aside from vacuum degassing, cyclic loading and unloading facilitates the de-trapping of hydrogen, allowing the dislocation to regain its hydrogen-free behaviour. These findings at the individual dislocation level can inform hydrogen embrittlement modelling and guide the design of hydrogen-resistant steels.

10.
PLoS Pathog ; 18(8): e1010765, 2022 08.
Article in English | MEDLINE | ID: mdl-35921364

ABSTRACT

Streptococcus suis serotype 2 (SS2) is a major zoonotic pathogen resulting in manifestations as pneumonia and septic shock. The upper respiratory tract is typically thought to be the main colonization and entry site of SS2 in pigs, but the mechanism through which it penetrates the respiratory barrier is still unclear. In this study, a mutant with low invasive potential to swine tracheal epithelial cells (STECs) was screened from the TnYLB-1 transposon insertion mutant library of SS2, and the interrupted gene was identified as autolysin (atl). Compared to wild-type (WT) SS2, Δatl mutant exhibited lower ability to penetrate the tracheal epithelial barrier in a mouse model. Purified Atl also enhanced SS2 translocation across STEC monolayers in Transwell inserts. Furthermore, Atl redistributed the tight junctions (TJs) in STECs through myosin light chain kinase (MLCK) signaling, which led to increased barrier permeability. Using mass spectrometry, co-immunoprecipitation (co-IP), pull-down, bacterial two-hybrid and saturation binding experiments, we showed that Atl binds directly to vimentin. CRISPR/Cas9-targeted deletion of vimentin in STECs (VIM KO STECs) abrogated the capacity of SS2 to translocate across the monolayers, SS2-induced phosphorylation of myosin II regulatory light chain (MLC) and MLCK transcription, indicating that vimentin is indispensable for MLCK activation. Consistently, vimentin null mice were protected from SS2 infection and exhibited reduced tracheal and lung injury. Thus, MLCK-mediated epithelial barrier opening caused by the Atl-vimentin interaction is found to be likely the key mechanism by which SS2 penetrates the tracheal epithelium.


Subject(s)
Streptococcal Infections , Streptococcus suis , Animals , Epithelium , Mice , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Streptococcal Infections/microbiology , Streptococcus suis/genetics , Swine , Tight Junctions/metabolism , Vimentin/genetics , Vimentin/metabolism
11.
J Bioenerg Biomembr ; 56(2): 181-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411863

ABSTRACT

Lung adenocarcinoma (LUAD) is one of the most lethal and common malignancies. The energy metabolism of LUAD is a critical factor affecting its malignant progression, and research on this topic can aid in the development of novel cancer treatment targets. Bioinformatics analysis of the expression of long non-coding RNA (lncRNA) LINC00665 in LUAD was performed. Downstream regulatory molecules of LINC00665 were predicted using the StarBase database. We used quantitative reverse transcription polymerase chain reaction and western blot to measure the expression at mRNA and protein levels, respectively. The effects of the LINC00665/let-7c-5p/HMMR axis on cell viability in vitro were tested by CCK-8 assay. The regulatory effects on glycolysis were analyzed by extracellular acidification rate, oxygen consumption rate, glucose uptake, adenosine triphosphate production, and lactate production. The predicted competitive endogenous RNA mechanism between LINC00665 and let-7c-5p/HMMR was verified by a dual-luciferase reporter gene assay. LINC00665 was upregulated in LUAD. Silencing LINC00665 inhibited tumor proliferation and reduced the glycolytic activity of tumor cells. Additionally, the expression of LINC00665 had a negative correlation with that of let-7c-5p, while the expression of HMMR was remarkably inhibited by let-7c-5p. HMMR could affect the development of LUAD by influencing glycolytic capacity. Mechanistically, LINC00665 acted as a molecular sponge to absorb let-7c-5p and targeted HMMR. Transfection of let-7c-5p inhibitor or overexpression of HMMR plasmid could reverse the inhibition in proliferation and glycolysis of LUAD cells induced by silencing of LINC00665. In summary, this study demonstrated that the LINC00665/let-7c-5p/HMMR regulatory axis promoted the tumorigenesis of LUAD by enhancing aerobic glycolysis, suggesting that this regulatory axis was an effective target for inhibiting LUAD progression and providing theoretical support for the development of new drugs for LUAD.


Subject(s)
Adenocarcinoma , MicroRNAs , Humans , Glycolysis , Energy Metabolism , Cell Survival , Lung , MicroRNAs/genetics , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
12.
J Med Virol ; 96(5): e29673, 2024 May.
Article in English | MEDLINE | ID: mdl-38767184

ABSTRACT

The SARS-CoV-2 virus is responsible for the human disease known as COVID-19. This virus is capable of generating a spectrum of infections ranging from moderate to severe. Serum apolipoprotein E (ApoE) inhibits inflammation by preserving immune regulatory function. Nonetheless, the relationship between serum ApoE and clinical prognosis in omicron remains elusive. A cohort of 231 patients was observed for 65 days, with death as the primary outcome. Based on their ApoE levels, the patients were categorized into patients with elevated ApoE levels and those with lower ApoE levels. To do statistical comparisons, the log-rank test was utilized, and the Kaplan-Meier method was utilized to estimate survival rates. Cox hazard models, both univariate and multivariate, were employed to examine the prognostic relevance. According to our research, omicron had significantly greater ApoE levels. In mild-to-moderate and severe cases, the study identified a statistically significant variation in ApoE levels. Additionally, there was a drop in overall survival that is statistically significant (OS, p < 0.0001) for patients with greater ApoE levels. Multiple Cox proportional hazards regression analysis indicates that an elevated ApoE level was determined to be an adverse and independent prognostic factor of OS in patients with omicron. Taken together, our study found that the level of serum ApoE at the time of initial diagnosis was substantially connected to the severity and prognosis of omicron. Consequently, we propose that ApoE might be a poor prognostic factor in individuals afflicted with the omicron variant.


Subject(s)
Apolipoproteins E , COVID-19 , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Female , Male , Prognosis , Middle Aged , Apolipoproteins E/genetics , Apolipoproteins E/blood , Aged , Proportional Hazards Models , Adult , Kaplan-Meier Estimate , Severity of Illness Index
13.
Haematologica ; 109(2): 458-465, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37470145

ABSTRACT

Primary hemophagocytic lymphohistiocytosis (pHLH) is a rare immune disorder and hematopoietic stem cell transplan- tation (HSCT) is the only potentially curative treatment. Given the high pre-HSCT mortality of pHLH patients reported in the HLH-2004 study (17%), more regimens to effectively control the disease and form a bridge with HSCT are needed. We conducted a retrospective study of pHLH children treated by ruxolitinib (RUX)-based regimen. Generally, patients received RUX until HSCT or unacceptable toxic side-effect. Methylprednisolone and etoposide were added sequentially when the disease was suboptimally controlled. The primary end point was 1-year overall survival. Twenty-one pHLH patients (12 previously treated and 9 previously untreated) were included with a median follow-up of 1.4 years. At last follow-up, 17 (81.0%) patients were alive with a 1-year overall survival of 90.5% (95% confidence interval: 84.1-96.9). Within the first 8 weeks, all patients had an objective response, of which 19 (90.5%) achieved complete response (CR) and two (9.5%) achieved partial response (PR) as a best response. Seventeen (81.0%) patients received HSCT, of which 13 (76.5%) had CR, three (17.6%) had PR and one (5.9%) had disease reactivation at the time of HSCT. Fifteen (88.2) patients were alive post- HSCT. Notably, eight (38.1%) patients received zero doses of etoposide, suggesting the potential of RUX-based regimen to reduce chemotherapy intensity. Patients tolerated RUX-based regimen well and the most frequently observed adverse events were hematologic adverse events. Overall, RUX-based regimen was effective and safe and could be used as a bridge to HSCT for pHLH children.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphohistiocytosis, Hemophagocytic , Nitriles , Pyrazoles , Pyrimidines , Child , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/etiology , Treatment Outcome , Retrospective Studies , Etoposide/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Pathologic Complete Response
14.
Ann Hematol ; 103(5): 1765-1774, 2024 May.
Article in English | MEDLINE | ID: mdl-38509388

ABSTRACT

Gaucher disease (GD) is an autosomal recessive ailment resulting from glucocerebrosidase deficiency caused by a mutation in the GBA1 gene, leading to multi-organ problems in the liver, spleen, and bone marrow. In China, GD is extremely uncommon and has a lower incidence rate than worldwide. In this study, we report the case of an adult male with an enlarged spleen for 13 years who presented with abdominal distension, severe loss of appetite and weight, reduction of the three-line due to hypersplenism, frequent nosebleeds, and bloody stools. Regrettably, the unexpected discovery of splenic pathology suggestive of splenic Gaucher disease was only made after a splenectomy due to a lack of knowledge about rare disorders. Our patient's delayed diagnosis may have been due to the department where he was originally treated, but it highlights the need for multidisciplinary consultation in splenomegaly of unknown etiology. We then investigated the patient's clinical phenotypes and gene mutation features using genetically phenotypical analysis. The analysis of the GBA1 gene sequence indicated that the patient carried a compound heterozygous mutation consisting of two potentially disease-causing mutations: c.907C > A (p. Leu303Ile) and c.1448 T > C (p. Leu483Pro). While previous research has linked the p. Leu483Pro mutation site to neurologic GD phenotypes (GD2 and GD3), the patients in this investigation were identified as having non-neuronopathic GD1. The other mutation, p. Leu303Ile, is a new GD-related mutation not indexed in PubMed that enriches the GBA1 gene mutation spectrum. Biosignature analysis has shown that both mutations alter the protein's three-dimensional structure, which may be a pathogenic mechanism for GD1 in this patient.


Subject(s)
Gaucher Disease , Splenic Diseases , Adult , Humans , Male , Gaucher Disease/complications , Gaucher Disease/genetics , Gaucher Disease/surgery , Splenectomy , Bone Marrow , Phenotype , Splenomegaly/genetics , Mutation , Glucosylceramidase/genetics
15.
Pediatr Blood Cancer ; 71(6): e30970, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556751

ABSTRACT

Langerhans cell histiocytosis (LCH) is a rare hematologic neoplasm characterized by the clonal proliferation of Langerhans-like cells. Colony-stimulating factor 1 receptor (CSF1R) is a membrane-bound receptor that is highly expressed in LCH cells and tumor-associated macrophages. In this study, a soluble form of CSF1R protein (sCSF1R) was identified by plasma proteome profiling, and its role in evaluating LCH prognosis was explored. We prospectively measured plasma sCSF1R levels in 104 LCH patients and 10 healthy children using ELISA. Plasma sCSF1R levels were greater in LCH patients than in healthy controls (p < .001) and significantly differed among the three disease extents, with the highest level in MS RO+ LCH patients (p < .001). Accordingly, immunofluorescence showed the highest level of membrane-bound CSF1R in MS RO+ patients. Furthermore, the plasma sCSF1R concentration at diagnosis could efficiently predict the prognosis of LCH patients treated with standard first-line treatment (AUC = 0.782, p < .001). Notably, dynamic monitoring of sCSF1R levels could predict relapse early in patients receiving BRAF inhibitor treatment. In vitro drug sensitivity data showed that sCSF1R increased resistance to Ara-C in THP-1 cells expressing ectopic BRAF-V600E. Overall, the plasma sCSF1R level at diagnosis and during follow-up is of great clinical importance in pediatric LCH patients.


Subject(s)
Histiocytosis, Langerhans-Cell , Receptor, Macrophage Colony-Stimulating Factor , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/pathology , Histiocytosis, Langerhans-Cell/blood , Male , Female , Child , Prognosis , Child, Preschool , Infant , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/blood , Adolescent , Prospective Studies , Follow-Up Studies
16.
Pediatr Blood Cancer ; : e31099, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845144

ABSTRACT

BACKGROUND: The clinical relevance of BRAF-V600E alleles in peripheral blood mononuclear cells (PBMCs) and the prognostic impact of the mutants in cell-free (cf) and PBMC DNAs of Langerhans cell histiocytosis (LCH) have not been fully clarified in pediatric LCH. METHODS: We retrospectively determined the levels of BRAF-V600E mutation in paired plasma and PBMC samples at the time of diagnosis of LCH. Subsequently, we performed a separate or combined analysis of the clinical and prognostic impact of the mutants. RESULTS: We assessed BRAF-V600E mutation in peripheral blood from 94 patients of childhood LCH. Our data showed that cfBRAF-V600E was related to young age, multiple-system (MS) disease, involvements of organs with high risk, increased risk of relapse, and worse progression-free survival (PFS) of patients. We also observed that the presence of BRAF-V600E in PBMCs at baseline was significantly associated with MS LCH with risk organ involvement, younger age, and disease progression or relapse. The coexisting of plasma(+)/PBMC(+) identified 36.2% of the patients with the worst outcome, and the hazard ratio was more significant than either of the two alone or neither, indicating that combined analysis of the mutation in plasma and PBMCs was more accurate to predict relapse than evaluation of either one. CONCLUSIONS: Concurrent assessment of BRAF-V600E mutation in plasma and PBMCs significantly impacted the prognosis of children with LCH. Further prospective studies with larger cohorts need to validate the results of this study.

17.
Phys Chem Chem Phys ; 26(4): 3044-3050, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38180238

ABSTRACT

The electrosynthesis of hydrogen peroxide (H2O2) offers a sustainable and viable option for generating H2O2 directly, as an alternative to the anthraquinone oxidation method. This study focuses on the comparative study of Co nanoparticles and single-atomic Co sites (Co SACs) that were encapsulated into nitrogen-doped carbon for the electrosynthesis of H2O2, which has been synthesized by direct pyrolysis of Zn/Co-ZIF or Co-based zeolitic imidazolate frameworks (ZIF-67). The electrochemical measurement results demonstrate that the coexistence of Co nanoparticles and single-atomic Co sites in the CoNC catalyst is more conducive for H2O2 production compared to Co SACs only, possessing better H2O2 selectivity of 73.3% and higher faradaic efficiency of 87%. The improved performance of CoNC with SACs can be attributed to the presence of additional Co nanoparticles in the nitrogen-doped carbon layers.

18.
J Nat Prod ; 87(2): 228-237, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38266493

ABSTRACT

As a model liverwort, Marchantia polymorpha contains various flavone glucuronides with cardiovascular-promoting effects and anti-inflammatory properties. However, the related glucuronosyltransferases have not yet been reported. In this study, two bifunctional UDP-glucuronic acid/UDP-glucose:flavonoid glucuronosyltransferases/glucosyltransferases, MpUGT742A1 and MpUGT736B1, were identified from M. polymorpha. Extensive enzymatic assays found that MpUGT742A1 and MpUGT736B1 exhibited efficient glucuronidation activity for flavones, flavonols, and flavanones and showed promiscuous regioselectivity at positions 3, 6, 7, 3', and 4'. These enzymes catalyzed the production of a variety of flavonoid glucuronides with medicinal value, including apigenin-7-O-glucuronide and scutellarein-7-O-glucuronide. With the use of MpUGT736B1, apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide were prepared by scaled-up enzymatic catalysis and structurally identified by NMR spectroscopy. MpUGT742A1 also displayed glucosyltransferase activity on the 7-OH position of the flavanones using UDP-glucose as the sugar donor. Furthermore, we constructed four recombinant strains by combining the pathway for increasing the UDP-glucuronic acid supply with the two novel UGTs MpUGT742A1 and MpUGT736B1. When apigenin was used as a substrate, the extracellular apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide production obtained from the Escherichia coli strain BB2 reached 598 and 81 mg/L, respectively. Our study provides new candidate genes and strategies for the biosynthesis of flavonoid glucuronides.


Subject(s)
Flavanones , Marchantia , Flavonoids/chemistry , Apigenin , Glucuronides/metabolism , Marchantia/metabolism , Glucuronosyltransferase/chemistry , Glucuronosyltransferase/metabolism , Escherichia coli/metabolism , Glucose , Glucuronic Acid , Uridine Diphosphate
19.
Dig Dis Sci ; 69(6): 2109-2122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564148

ABSTRACT

BACKGROUND: Cholesterol ester storage disorder (CESD; OMIM: 278,000) was formerly assumed to be an autosomal recessive allelic genetic condition connected to diminished lysosomal acid lipase (LAL) activity due to LIPA gene abnormalities. CESD is characterized by abnormal liver function and lipid metabolism, and in severe cases, liver failure can occur leading to death. In this study, one Chinese nonclassical CESD pedigree with dominant inheritance was phenotyped and analyzed for the corresponding gene alterations. METHODS: Seven males and eight females from nonclassical CESD pedigree were recruited. Clinical features and LAL activities were documented. Whole genome Next-generation sequencing (NGS) was used to screen candidate genes and mutations, Sanger sequencing confirmed predicted mutations, and qPCR detected LIPA mRNA expression. RESULTS: Eight individuals of the pedigree were speculatively thought to have CESD. LAL activity was discovered to be lowered in four living members of the pedigree, but undetectable in the other four deceased members who died of probable hepatic failure. Three of the four living relatives had abnormal lipid metabolism and all four had liver dysfunctions. By liver biopsy, the proband exhibited diffuse vesicular fatty changes in noticeably enlarged hepatocytes and Kupffer cell hyperplasia. Surprisingly, only a newly discovered heterozygous mutation, c.1133T>C (p. Ile378Thr) on LIPA, was found by gene sequencing in the proband. All living family members who carried the p.I378T variant displayed reduced LAL activity. CONCLUSIONS: Phenotypic analyses indicate that this may be an autosomal dominant nonclassical CESD pedigree with a LIPA gene mutation.


Subject(s)
Cholesterol Ester Storage Disease , Heterozygote , Pedigree , Sterol Esterase , Humans , Male , Female , Cholesterol Ester Storage Disease/genetics , Cholesterol Ester Storage Disease/diagnosis , Sterol Esterase/genetics , Adult , Mutation , Genes, Dominant , Middle Aged , Phenotype , Adolescent , Child
20.
BMC Pregnancy Childbirth ; 24(1): 269, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609869

ABSTRACT

BACKGROUND: Empathy is a critical component of nursing care, impacting both nurses' and patients' outcomes. However, perceived empathy from spouses during pregnancy and its impact on health-related quality of life (HRQoL) are unclear. This study aimed to examine pregnant women's perceived empathy from their spouses and assess the relation of perceived empathy on HRQoL. METHODS: This cross-sectional study, performed in the obstetric clinics or wards of four well-known hospitals in Anhui Province, China, included 349 pregnant women in the second or third trimester; participants were recruited by convenience sampling and enrolled from October to December 2021. A general information questionnaire, the Interpersonal Reactivity Index (IRI), a purpose-designed empathy questionnaire and the Medical Outcomes Study 12-item Short-Form Health Survey (SF-12) were used to evaluate the pregnant women's general information, perceptions of empathy and HRQoL. Data were analysed using SPSS 22 at a threshold of P < 0.05. Descriptive analysis, Pearson correlation analysis, Student's t test, ANOVA, and multiple regression analysis were used for analysis. RESULTS: The pregnant women's total empathy, physical component summary (PCS) and mental component summary (MCS) scores were 41.6 ± 9.0, 41.6 ± 7.6, and 47.7 ± 9.1, respectively. Correlation analysis revealed that the purpose-designed empathy questionnaire items were significantly positively correlated with perspective taking and empathic concern but were not correlated with the personal distress dimension and were only partially correlated with the fantasy dimension. Maternal physical condition during pregnancy, planned pregnancy, and occupational stress were predictors of the PCS score (ß = 0.281, P < 0.01; ß = 0.132, P = 0.02; ß = -0.128, P = 0.02). The behavioural empathy item of our purpose-designed empathy questionnaire and empathic concern were important predictors of the MCS score (ß = 0.127, P = 0.02; ß = 0.158, P < 0.01), as well as other demographic and obstetric information, explaining 22.0% of the variance in MCS scores totally (F = 12.228, P < 0.01). CONCLUSIONS: Pregnant women perceived lower empathy from their spouses and reported lower HRQoL. Perceived empathy, particularly behavioural empathy, may significantly impact pregnant women's MCS scores but has no effect on their PCS scores. Strategies that foster perceived empathy from spouses among pregnant women are essential for facilitating healthy pregnancies and potentially improving maternal and child health.


Subject(s)
Empathy , Spouses , Pregnancy , Child , Humans , Female , Cross-Sectional Studies , Pregnant Women , Quality of Life , China
SELECTION OF CITATIONS
SEARCH DETAIL