Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Int J Med Sci ; 21(1): 175-187, 2024.
Article in English | MEDLINE | ID: mdl-38164357

ABSTRACT

Chronic wounds cause physical, psychological and economic damage to patients, while therapeutic choices are limited. ILK was reported to play key roles in both fibrosis and angiogenesis, which are two important factors during wound healing. However, the function of ILK during vascularization in wounds remains unclear. In our study, we found increased ILK expression in chronic wound tissues compared to adjacent tissue, as well as a positive relationship between ILK expression and microvessel density. Moreover, fibroblasts overexpressing ILK showed an enhanced ability to promote HUVEC migration and tube formation, during which PI3K/Akt, downstream of ILK, played key roles and VEGFA was the key cytokine. Considering the important function of ILK in wound healing and the lack of an ILK activator, we investigated microRNAs targeting ILK and found that miR-758-3p could target ILK to regulate its transcription. The inhibition of miR-758-3p increased ILK expression and sequentially upregulated VEGFA and activated angiogenesis in vivo and in vitro. Taken together, these results revealed that ILK played a key role in wound healing by regulating angiogenesis and that activating ILK by inhibiting miR-758-3p was an effective way to promote wound healing. Whether miR-758-3p/ILK signaling can be utilized as a therapeutic target for wound healing requires further investigation.


Subject(s)
MicroRNAs , Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/metabolism , Angiogenesis , Signal Transduction/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Wound Healing/genetics , Cell Proliferation/physiology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
2.
J Nanobiotechnology ; 21(1): 153, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37189121

ABSTRACT

Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , Humans , Reproducibility of Results , Early Detection of Cancer , Biomarkers, Tumor/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Extracellular Vesicles/metabolism
3.
J Chromatogr A ; 1718: 464700, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38354507

ABSTRACT

Extracellular vesicles (EVs) play a multifaceted role in intercellular communication and hold significant promise as bio-functional indicators for clinical diagnosis. Although plasma samples represent one of the most critical sources of circulating EVs, the existing technical challenges associated with plasma-EV isolation have restricted their application in disease diagnosis and biomarker discovery. In this study, we introduce a two-step purification method utilizing ultracentrifugation (UC) to isolate crude extracellular vesicle (EV) samples, followed by a phospholipid affinity-based technique for the selective isolation of small EVs, ensuring a high level of purity for downstream proteomic analysis. Our research demonstrates that the UC & TiO2-coated magnetic bead (TiMB) purification system significantly improves the purity of EVs when compared to conventional UC or TiMB along. We further revealed that proteomic alterations in plasma EVs effectively reflect key gene ontology components associated with diabetic retinopathy (DR) pathogenesis, including the VEGF-activated neuropilin pathway, positive regulation of angiogenesis, angiogenesis, cellular response to vascular endothelial growth factor stimulus, and immune response. By employing a comprehensive analytical approach, which incorporates both time-series analysis (cluster analysis) and differential analysis, we have identified three potential protein signatures including LGALS3, MYH10, and CPB2 that closely associated with the retinopathy process. These proteins exhibit promising diagnostic and severity-classification capabilities for DR disease. This adaptable EV isolation system can be regarded as an effective analytical tool for enhancing plasma-based liquid biopsies toward clinical applications.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Extracellular Vesicles , Humans , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/metabolism , Proteomics/methods , Vascular Endothelial Growth Factor A/metabolism , Extracellular Vesicles/metabolism , Ultracentrifugation
4.
Orphanet J Rare Dis ; 19(1): 218, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802922

ABSTRACT

BACKGROUND: Microtia is reported to be one of the most common congenital craniofacial malformations. Due to the complex etiology and the ethical barrier of embryonic study, the precise mechanisms of microtia remain unclear. Here we report a rare case of microtia with costal chondrodysplasia based on bioinformatics analysis and further verifications on other sporadic microtia patients. RESULTS: One hundred fourteen deleterious insert and deletion (InDel) and 646 deleterious SNPs were screened out by WES, candidate genes were ranked in descending order according to their relative impact with microtia. Label-free proteomic analysis showed that proteins significantly different between the groups were related with oxidative stress and energy metabolism. By real-time PCR and immunohistochemistry, we further verified the candidate genes between other sporadic microtia and normal ear chondrocytes, which showed threonine aspartase, cadherin-13, aldolase B and adiponectin were significantly upregulated in mRNA levels but were significantly lower in protein levels. ROS detection and mitochondrial membrane potential (∆ Ψ m) detection proved that oxidative stress exists in microtia chondrocytes. CONCLUSIONS: Our results not only spot new candidate genes by WES and label-free proteomics, but also speculate for the first time that metabolism and oxidative stress may disturb cartilage development and this might become therapeutic targets and potential biomarkers with clinical usefulness in the future.


Subject(s)
Congenital Microtia , Oxidative Stress , Humans , Congenital Microtia/genetics , Congenital Microtia/metabolism , Oxidative Stress/genetics , Proteomics , Male , Female , Chondrocytes/metabolism , Chondrocytes/pathology , Multiomics
5.
J Cancer ; 14(7): 1161-1173, 2023.
Article in English | MEDLINE | ID: mdl-37215458

ABSTRACT

Background and aim: As an oncogenic long noncoding RNA, differentiation antagonizing non-protein coding RNA (DANCR) was identified in many kinds of cancers. However, the specific function of DANCR in melanoma remains unclear. Here, we aimed to clarify the role of DANCR played in melanoma progression and the underlying mechanisms. Methods: TCGA data base and patients' tissue samples were used to analyzed the function of DANCR in melanoma progression. Transwell assay was used to detect cell migration and tube formation assay was employed to assess the ability of angiogenesis. Western blot, qRT-PCR, ELISA and IHC assay were used to examine VEGFB expression and secrection. Luciferase assay verified the binding of DANCR and miRNA. Results: We found that the expression of DANCR was positively related to poor clinical prognosis of melanoma. DANCR knockdown suppressed melanoma progression with a more significant suppression in vivo compared with it in vitro. Further detection showed that beyond promoting proliferation, DANCR also enhanced angiogenesis via upregulating VEGFB. Mechanistic analysis revealed that DANCR upregulating VEGFB through sponging miR-5194, which negatively regulated VEGFB expression and secretion. Conclusion: We demonstrated a novel oncogenic role DANCR played in melanoma and suggested a new avenue for melanoma therapy by targeting the DANCR/miR-5194/VEGFB signaling.

SELECTION OF CITATIONS
SEARCH DETAIL