Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Inorg Chem ; 63(7): 3327-3334, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38315152

ABSTRACT

Recently, facilely designable metal-organic frameworks have gained attention in the construction of photothermal conversion materials. Nonetheless, most of the previously reported photothermal conversion metal-organic frameworks exhibit limited light absorption capabilities. In this work, a distinctive metal-organic framework with heterogeneous periodic alternate spatial arrangements of metal-oxygen clusters and perylene-based derivative molecules was prepared by in situ synthesis. The building blocks in this inimitable structure behave as both electron donors and electron acceptors, giving rise to the significant inherent charge transfer in this crystalline material, resulting in a narrow band gap with excellent panchromatic absorption, with the ground state being the charge transfer state. Moreover, it can retain excellent air-, photo-, and water-stability in the solid state. The excellent stability and broad light absorption characteristics enable the effective realization of near-infrared (NIR) photothermal conversion, including infrequent NIR-II photothermal conversion, in this perylene-based metal-organic framework.

2.
Inorg Chem ; 63(36): 16799-16806, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39193871

ABSTRACT

In this study, charge-transfer-type compounds comprising synthesized naphthalenediimide derivative (H4NDISA) or its Pb-based coordination polymer (Pb-NDISA) and suitable primary or secondary amine organic molecules were prepared by the solvent-free mechanical grinding method. The coloration phenomenon arising from charge transfer during grinding serves as a discriminative tool for distinguishing various organic guest molecules. The porous structure of Pb-NDISA crystals facilitates the infiltration of guest molecules and contributes to the preservation of the intermolecular charge transfer state. Moreover, the intermolecular charge transfer induced by grinding exhibits remarkable stability in an ambient atmosphere, underscoring the pivotal role of well-ordered molecules in the mechanical grinding procedure. This mechanochromic phenomenon holds promise for the detection and sensing of organic molecules, while the exceptional charge-transfer absorption characteristics offer the potential for efficient near-infrared photothermal conversion.

3.
Environ Monit Assess ; 189(1): 3, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27915392

ABSTRACT

The suspension and hydrodynamic characteristics of the Yellow River Delta during storms were analyzed based on suspended samples obtained using automatic samplers during a storm event in the Yellow River Delta. Synchronous data for winds, waves, and tides were also collected from a nearby station. The results show that under wind speeds of 5-15 m/s and wave heights of 50-150 cm, the suspended content reached 5.7-49.6 kg/m3, which is 10-100 times higher than that under normal weather conditions. The medium diameter of suspended particles was 1.2-2.1 µm (8.9-9.7 Φ), which was approximately 1-2 Φ finer than that under normal weather conditions. During the early stages of the measurements, the sea level had risen by 50 cm owing to the storm, which was in addition to the tidal sea level change. We suggest that during the storms, the waves strengthened and the storm-induced sea level change, which was combined with tidal currents moving in the same direction, produced high-speed currents. This overcame the cohesive forces among the fine sediment particles and suspended a large amount of sediment. As a result, the suspended content increased markedly and the suspended particle size became finer. This explains the intense siltation and erosion of the Yellow River Delta during storms.


Subject(s)
Environmental Monitoring , Geologic Sediments/analysis , Rivers/chemistry , Weather , Particle Size , Water Movements
4.
Heliyon ; 10(5): e27569, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486747

ABSTRACT

Gastric cancer (GC) is a malignant tumor with poor prognosis. Studies have shown that cysteine-rich secretory protein LCCL domain containing 1 (CRISPLD1) is associated with tumor progression. However, its role in GC is unclear. The present study aimed to determine the pathogenic mechanism of CRISPLD1 in GC. Analysis of public databases revealed high mRNA expression of CRISPLD1 in GC, which was associated with poor prognosis. Additionally, CRISPLD1 expression levels showed significant correlations with T stage, overall survival events, and stage. Knockdown of CRISPLD1 reduced cell proliferation, invasion, and migration. Furthermore, CRISPLD1 knockdown decreased intracellular calcium levels in GC cells and inhibited the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Treatment with an AKT activator reversed the inhibitory effect of CRISPLD1 knockdown on GC cell migration and invasion. Our findings suggest that CRISPLD1 promotes tumor cell progression in GC by mediating intracellular calcium levels and activating the PI3K-AKT pathway, highlighting CRISPLD1 as a potential therapeutic target for GC.

5.
Water Res ; 261: 122057, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38991246

ABSTRACT

Wave-induced liquefaction is a geological hazard under the action of cyclic wave load on seabed. Liquefaction influences the suspended sediment concentration (SSC), which is essential for sediment dynamics and marine water quality. Till now, the identification of liquefaction state and the effect of liquefaction on SSC have not been sufficiently accounted for in the sediment model. In this study, we introduced a method for simulating the liquefaction-induced resuspension flux into an ocean model. We then simulated a storm north of the Yellow River Delta, China, and validated the results using observational data, including significant wave heights, water levels, excess pore water pressures, and SSCs. The liquefaction areas were mainly distributed in coastal zones with water depths less than 12 m, and the simulated maximum potential soil liquefaction depth was 1.39 m. The liquefaction-induced SSC was separated from the total SSC of both liquefaction- and shear-induced SSCs by the model, yielding a maximum liquefaction-induced SSC of 1.07 kg·m-3. The simulated maximum proportion of liquefaction-induced SSC was 26.2% in regions with water depths of 6-12 m, with a maximum significant wave height of 3.4 m along the 12 m depth contour. The erosion zone at water depths of 8-12 m was reproduced by the model. Within 52.5 h of the storm, the maximum erosion thickness along the 10 m depth contour was enhanced by 33.9%. The model is applicable in the prediction of liquefaction, and provides a new method to simulate the SSC and seabed erosion influenced by liquefaction. Model results show that liquefaction has significant effects on SSC and seabed erosion in the coastal area with depth of 6-12 m. The validity of this method is confined to certain conditions, including a fully saturated seabed exhibiting homogeneity and isotropic properties, small liquefaction depth, residual liquefaction dominating the development of pore pressures, no influence by structures, and the sediment composed of silt and mud that experiences frequent wave-induced liquefaction.


Subject(s)
Geologic Sediments , Models, Theoretical , Geologic Sediments/chemistry , China , Water Movements
6.
PLoS One ; 14(3): e0213011, 2019.
Article in English | MEDLINE | ID: mdl-30870455

ABSTRACT

Considering the serious land-based pollution and the weak water exchange ability of western Laizhou Bay, it is essential to conduct an ecological risk assessment of the pollutants in this area. In this study, the ecological risk caused by heavy metals deposited in the surface sediments and those resuspended in the seawater of western Laizhou Bay was evaluated using probabilistic approaches. First, the concentrations of seven heavy metals, namely As, Cd, Cr, Cu, Hg, Pb, and Zn, in the surface sediments and seawater of western Laizhou Bay were detected during the spring and autumn of 2016. The concentrations of As, Cd, Cr, Cu, and Pb were found to be at levels comparable to those in the other global coastal systems, while those of Hg and Zn were lower than those in other coastal areas. Next, an ecological risk assessment of heavy metals in the surface sediments was performed using a typical potential ecological risk index and refined by using a Monte Carlo simulation. The results suggested low risk for the heavy metals detected in the sediments of western Laizhou Bay, with the exception of Hg in September 2016, which showed a probability (0.03%) of moderate risk. Meanwhile, the aquatic ecological risk assessment of the heavy metals was performed by applying a combination of hazard quotient (HQ) and joint probability curve. While the ecological risk of Cd, Hg, and Pb was found to be acceptable, the HQs for Cr, Cu, and Zn were greater than 1, and the overall risk probability of their adverse effects was higher than 0.05, suggesting certain ecological risk. Specifically, in the case of As, the overall risk probability was lower than 0.05, suggesting that its ecological risk was acceptable, although its HQ was greater than 1. Thus, by applying the probabilistic approaches, the ecological risk of the heavy metals in western Laizhou Bay was better characterized in this study, avoiding both overestimation and underestimation of ecological risk.


Subject(s)
Environmental Monitoring/methods , Marine Biology/methods , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Bays , China , Geologic Sediments/analysis , Metals, Heavy/toxicity , Monte Carlo Method , Probability , Risk Assessment/methods , Seawater/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL