Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Small ; : e2401044, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38516941

ABSTRACT

Atomically precise metal clusters serve as a unique model for unraveling the intricate mechanism of the catalytic reaction and exploring the complex relationship between structure and activity. Herein, three series of water-soluble heterometallic clusters LnCu6, abbreviated as LnCu6-AC (Ln = La, Nd, Gd, Er, Yb; HAC = acetic acid), LnCu6-IM (Ln = La and Nd; IM = Imidazole), and LnCu6-IDA (Ln = Nd; H2IDA = Iminodiacetic acid) are presented, each featuring a uniform metallic core stabilized by distinct protected ligands. Crystal structure analysis reveals a triangular prism topology formed by six Cu2+ ions around one Ln3+ ion in LnCu6, with variations in Cu···Cu distances attributed to different ligands. Electrocatalytic oxygen evolution reaction (OER) shows that these different LnCu6 clusters exhibit different OER activities with remarkable turnover frequency of 135 s-1 for NdCu6-AC, 79 s-1 for NdCu6-IM and 32 s-1 for NdCu6-IDA. Structural analysis and Density Functional Theory (DFT) calculations underscore the correlation between shorter Cu···Cu distances and improves OER catalytic activity, emphasizing the pivotal role of active-site distance in regulating electrocatalytic OER activities. These results provide valuable insights into the OER mechanism and contribute to the design of efficient homogeneous OER electrocatalysts.

2.
J Chem Phys ; 160(22)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38856683

ABSTRACT

Magnetic property (e.g. spin order) of support is of great importance in the rational design of heterogeneous catalysts. Herein, we have taken the Ni-supported ferromagnetic (FM) CrBr3 support (Nix/CrBr3) to thoroughly investigate the effect of spin-order on electrocatalytic oxygen reduction reaction (ORR) via spin-polarized density functional theory calculations. Specifically, Ni loading induces anti-FM coupling in Ni-Cr, leading to a transition from FM-to-ferrimagnetic (FIM) properties, while Ni-Ni metallic bonds create a robust FM direct exchange, benefiting the improvement of the phase transition temperature. Interestingly, with the increase in Ni loading, the easy magnetic axis changes from out-of-plane (2D-Heisenberg) to in-plane (2D-XY). The adsorption properties of Nix/CrBr3, involving O2 adsorption energy and configuration, are not governed by the d-band center but strongly correlate with magnetic anisotropy. It is noteworthy that the applied potential and electrolyte acidity triggers spin-order transition phenomena during the ORR and induces the catalytic pathway change from 4e- ORR to 2e- ORR with the excellent onset potential of 0.93 V/reversible hydrogen electrode, comparable to the existing most excellent noble-metal catalysts. Generally, these findings offer new avenues to understand and design heterogeneous catalysts with magnetic support.

3.
Angew Chem Int Ed Engl ; : e202410710, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949854

ABSTRACT

Metallo-supramolecular cages have garnered tremendous attention for their diverse yet molecular-level precision structures. However, physical properties of these supramolecular ensembles, which are of potential significance in molecular electronics, remain largely unexplored. We herein constructed a series of octahedral metallo-cages and cage-fullerene complexes with notably enhanced structural stability. As such, we could systematically evaluate the electrical conductivity of these ensembles at both single-molecule level and aggregated bulk state (as well-defined films). Our findings reveal that counteranions and fullerene guests play a pivotal role in determining the electrical conductivity of aggregated state, while such effects are less significant for single-molecule conductance. Both counteranions and fullerenes effectively tune the electronic structures and packing density of metallo-supramolecular assemblies, and facilitate efficient charge transfer between the cage hosts and fullerenes, resulting in a notable one order of magnitude increase in electrical conductivity of the aggregated state.

4.
Angew Chem Int Ed Engl ; : e202410414, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924578

ABSTRACT

A series of TADF-active compounds: 0D chiral Ln-Ag(I) clusters L-/D-Ln2Ag28-0D (Ln = Eu/Gd) and 2D chiral Ln-Ag(I) cluster-based frameworks L-/D-Ln2Ag28-2D (Ln = Gd) has been synthesized. Atomic-level structural analysis showed that the chiral Ag(I) cluster units {Ag14S12} in L-/D-Ln2Ag28-0D and L-/D-Ln2Ag28-2D exhibited similar configurations, linked by varying numbers of [Ln(H2O)x]3+ (x = 6 for 0D, x = 3 for 2D) to form the final target compounds. Temperature-dependent emission spectra and decay lifetimes measurement demonstrated the presence of TADF in L-Ln2Ag28-0D (Ln = Eu/Gd) and L-Gd2Ag28-2D. Experimentally, the remarkable TADF properties primarily originated from {Ag14S12} moieties in these compounds. Notably, {Ag14S12} in L-Eu2Ag28-0D and L-Gd2Ag28-2D displayed higher promote fluorescence rate and shorter TADF decay times than L-Gd2Ag28-0D. Combined with theoretical calculations, it was determined that the TADF behaviors of {Ag14S12} cluster units were induced by 4f perturbation of Ln3+ ions. Specially, while maintaining ΔE(S1-T1) small enough, it can significantly increase k(S1→S0) and reduce TADF decay time by adjusting the type or number of Ln3+ ions, thus achieving the purpose of improving TADF for cluster-based luminescent materials.

5.
J Am Chem Soc ; 145(31): 16983-16987, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37505903

ABSTRACT

Electrically conductive metal-organic frameworks (MOFs) have been extensively studied for their potential uses in energy-related technologies and sensors. However, achieving that goal requires MOFs to be highly stable and maintain their conductivity under practical operating conditions with varying solution environments and temperatures. Herein, we have designed and synthesized a new series of {[Ln4(µ4-O)(µ3-OH)3(INA)3(GA)3](CF3SO3)(H2O)6}n (denoted as Ln4-MOFs, Ln = Gd, Tm, and Lu, INA = isonicotinic acid, GA = glycolic acid) single crystals, where electrons are found to transport along the π-π stacked aromatic carbon rings in the crystals. The Ln4-MOFs show remarkable stability, with minimal changes in conductivity under varying solution pH (1-12), temperature (373 K), and electric field as high as 800 000 V/m. This stability is achieved through the formation of strong coordination bonds between high-valent Ln(III) ions and rigid carboxylic linkers as well as hydrogen bonds that enhance the robustness of the electron transport path. The demonstrated lanthanide MOFs pave the way for the design of stable and conductive MOFs.

6.
Inorg Chem ; 62(1): 266-274, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36548144

ABSTRACT

Multifunctional materials with switchable magnetic and dielectric properties are crucial for the development of memory and sensor devices. Herein, we report a methoxy-bridged dinuclear iron-pyridyl complex [Fe2(4-picoline)4(NCS)4(µ-OCH3)2] (1), which shows simultaneous thermal-induced magnetic and dielectric switchings. Within the phase-transition temperature range, both magnetic switching and the dielectric anomaly were detected, in which the thermal hysteresis loops were 23 and 21 K, respectively. Detailed structural analyses revealed that these simultaneous switchings were rooted in the flexible rotatable ligands, which were actuated by readjusting the π-π intermolecular interactions between the pyridine ligands in the trans positions of the metal centers. These results were comprehensively investigated both experimentally and theoretically. This study presents a new guideline to control both the magnetic and dielectric properties of molecular complexes by external stimuli.

7.
Phys Chem Chem Phys ; 25(16): 11673-11683, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37051874

ABSTRACT

The rational design of high-performance catalysts for oxygen reduction reactions (ORRs) is of great importance for large-scale applications in the field of proton-exchange membrane fuel cells and the green synthesis of H2O2. The effect of spin states of paramagnetic metal ions on the selectivity of ORRs is significant for single-atom catalysts (SACs). In this work, via spin-polarization density functional theory (DFT) calculations, we systematically investigated the popular paramagnetic metal-nitrogen graphene (M-N4-C, M = Mn, Fe, and Co) SACs to mainly focus on the correlation of spin states and catalytic performance (e.g. activity and selectivity). Both thermodynamically and kinetically, it was found that Co-N4-C (S = 1/2) has excellent 2e- oxygen reduction performance (hydrogen peroxide production) with an ultralow overpotential of 0.03 V, and the hydrogenation of OOH* is the rate-determining step (RDS) with an energy barrier of 1.20 eV. The 4e- ORR tends to occur along the OOH dissociation pathway (O* + OH*) on Co-N4-C (S = 3/2), in which OOH* decomposition is the RDS with an energy barrier of 1.01 eV. It is proved that the spin magnetic moment is the key factor to regulate the ORR property via multi-angle electronic analysis. The spin states of catalysts play a crucial role in the activity and selectivity of ORRs mainly by manipulating the bond strength between OOH and catalysts. This will provide new insights for the rational design of ORR catalysts with magnetic metals.

8.
Angew Chem Int Ed Engl ; 62(6): e202216592, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36478491

ABSTRACT

We explored a co-dissolved strategy to embed mono-dispersed Pt center into V2 O5 support via dissolving [PtV9 O28 ]7- into [V10 O28 ]6- aqueous solution. The uniform dispersion of [PtV9 O28 ]7- in [V10 O28 ]6- solution allows [PtV9 O28 ]7- to be surrounded by [V10 O28 ]6- clusters via a freeze-drying process. The V centers in both [PtV9 O28 ]7- and [V10 O28 ]6- were converted into V2 O5 via a calcination process to stabilize Pt center. These double separations can effectively prevent the Pt center agglomeration during the high-temperature conversion process, and achieve 100 % utilization of Pt in [PtV9 O28 ]7- . The resulting Pt-V2 O5 single-atom-site catalysts exhibit a CH4 yield of 247.6 µmol g-1 h-1 , 25 times higher than that of Pt nanoparticle on the V2 O5 support, which was accompanied by the lactic acid photooxidation to form pyruvic acid. Systematical investigations on this unambiguous structure demonstrate an important role of Pt-O atomic pair synergy for highly efficient CO2 photoreduction.

9.
Chemistry ; 28(13): e202103828, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35019179

ABSTRACT

Distorting linear polyaromatic hydrocarbons (PAHs) out of planarity affects their physical properties and breaks their symmetry to induce inherent chirality. However, the chirality cannot be achieved in large distorted PAHs-based macrocycles due to a low racemization barrier for isomerization. Herein, we report the precise synthesis and tuning size-dependent (chir)optical properties of a new class of chiral PAHs-containing conjugated macrocycles (cyclo[n]paraphenylene-2,6-anthrylene, [n]CPPAn2,6 ; n=6-8). Their inherent chiralities were squeezed out in small anthrylene-based macrocycles. Efficient resolutions for chiral enantiomers with (P)/(M)-helicity of small [6-7]CPPAns were achieved by HPLC. Interestingly, these macrocycles showed enriched size-dependent physical, chiral, and (chir)optical properties. Theoretical calculations indicate that these macrocycles have high strain energy (Estrain =60.8 to 73.4 kcal/mol) and very small Egap (∼3.0 eV). Notably, these enantiomers showed strong chiroptical properties and dissymmetry factors (|gabs | and |glum |∼0.01 for an enantiomer of [6]CPPAn2,6 ), which can give them potential applications in optically active materials.

10.
Inorg Chem ; 61(23): 8861-8869, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35653200

ABSTRACT

A family of nanoclusters, [Ln33(EDTA)12(OAc)2(CO3)4(µ3-OH)36(µ5-OH)4(H2O)38]·OAc·xH2O (x ≈ 50, Ln = Sm for 1; x ≈ 70, Ln = Eu for 2) and [Gd32(EDTA)12(OAc)2(C2O4)(CO3)2(µ3-OH)36(µ5-OH)4(H2O)36]·x(H2O) (x ≈ 70 for 3; H4EDTA = ethylene diamine tetraacetic acid), was prepared through the assembly of repeating subunits under the action of an anion template. The analysis of the structures showed that compounds 1 and 2 containing 33 Ln3+ ions were isostructural, which were constructed by three kinds of subunits in the presence of CO32- as an anion template, while compound 3 had a slightly different structure. Compound 3 containing 32 Gd3+ ions was formed by three types of subunits in the presence of CO32- and C2O42- as a mixed anion template. The CO32- anions came from the slow fixation of CO2 in the air. Meanwhile, one kind of high-nuclearity lanthanide clusters showed high chemical stability. The quantum Monte Carlo (QMC) calculation suggested that weak antiferromagnetic interactions were dominant between Gd3+ ions in 3. Magnetocaloric studies showed that compound 3 had a large entropy change of 43.0 J kg-1 K-1 at 2 K and 7 T. Surprisingly, compound 2 showed excellent recognition and detection effects for permanganate in aqueous solvents based on the fluorescence quenching phenomenon.

11.
Phys Chem Chem Phys ; 24(6): 3905-3917, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35089298

ABSTRACT

Studying the effect of the coordination field on the catalytic property is critical for the rational design of outstanding electrocatalysts for H2O2 synthesis. Herein, via density functional theory (DFT) calculations and ab initio molecular dynamic (AIMD) simulations, we built an effective computational framework to identify the synergetic effect of an aqua ligand and metal ion on the 2e- ORR catalytic performance under gas condition and aqua solvent. Specifically, the screening results of 29 single-atom catalysts (SACs), TM@C6N6 (TM = transition metal), indicated that Cu@C6N6 features excellent catalytic property with thermal stability, lowest 2e- ORR overpotential (0.02 V) and high selectivity of 99.99%. Once an aqua ligand binds with the Cu site, the activity is reduced to the overpotential of 0.42 V and the selectivity decreased slightly (99.98%) due to the reduction of the adsorption strength for the reaction intermediates. A combination of geometric structures and electronic properties revealed that such changes are correlated with the charge of the Cu site. Furthermore, based on molecular orbital theory, the essence of the high catalytic property deeply lies in the effect of the moderate electron back donation bond (dyz & dxz→) between Cu and O2. This work will provide a route to better design high-performance SACs for H2O2 synthesis effectively.

12.
J Am Chem Soc ; 143(16): 6114-6122, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33871997

ABSTRACT

It is highly desirable to achieve solar-driven conversion of CO2 to valuable fuels with controlled selectivity. The existing catalysts are mainly explored for CO production but rarely for formate generation. Herein, highly selective photoreduction of CO2 to formate (99.7%) was achieved with a high yield of 3040 µmol g-1 in 10 h by hierarchical integration of photosensitizers and monometallic [bpy-Cu/ClX] (X = Cl or adenine) catalysts into a stable Eu-bpy metal-organic framework. However, replacing X with pyridine in [bpy-CuCl/X] significantly reduced formate production while increasing the CO yield to 960 µmol g-1. Systematic investigations revealed that the catalytic process is mediated by the H-bond synergy between Cu-bound X and CO2-derived species, and the selectivity of HCOO- can be controlled by simply replacing the coordination ligands. This work provides a molecularly precise structural model to provide mechanistic insights for selectivity control of CO2 photoreduction.

13.
Inorg Chem ; 60(10): 6981-6985, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33913721

ABSTRACT

Four pairs of chiral 3D coordination polymers (CPs), [Zn2(BDC)(lac)(DMF)]·guest (2) (H2BDC = benzene dicarboxylic acid; H2lac = lactic acid; guest = 1.5DMF + i-PrOH), [Co2(BDC)(lac)(DMF)]·guest (3) (guest = DMF + 2H2O), [Fe4(BDC)3(lac)2(DMF)2](CO3)·guest (4) (guest = DMF + 2H2O), and {Zn11(BPDC)6(lac)6[NH2(CH3)2]2}·guest (H2BPDC = 3,3'-biphenyldicarboxylic acid; guest = 6DMF + 18H2O) (5), are prepared through the reactions of racemic lactic acid (rac-H2lac) with different metal ions and auxiliary ligands. Structural analyses and DFT calculations reveal that forming more and stronger coordination bonds between the auxiliary ligand and metal ions is more conducive to the spontaneous resolution of enantiomers in 3D CPs than simply increasing the entropy of the auxiliary ligand itself.

14.
Inorg Chem ; 59(3): 1959-1966, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31950821

ABSTRACT

A series of heterometallic Ln-Cr clusters with the formulas [Ln5Cr2(H2L)2(OAc)6(µ3-OH)6(H2O)15](ClO4)7·xH2O (Ln = Gd and x = 33 for 1 and Ln = Dy and x = 21 for 2) and [Ln8Cr4(H2L)4(OAc)8(µ3-OH)16(µ4-O)1(H2O)8](Cl)(ClO4)5·10H2O (Ln = Gd for 3 and Ln = Dy for 4) was obtained through the reaction of the acetate ligands 2,2-dimethylolpropionic acid (H3L) and Ln(ClO4)3 in the presence of chromium salts with different anions under the same high pH conditions. X-ray analysis revealed that compound 1 contained a metal unit [Gd3Cr2] displaying the pentagonal bipyramid configuration and that compound 3 was templated by Cl- and ClO4- as a mixed anion template featuring a quadrangular structure. In compound 3, the 12 metal atoms were arranged in a wheel-shaped metal skeleton [Gd8Cr4], which was produced by 4 tetrahedral metal units [Gd3Cr] sharing vertices. The introduction of the mixed anion template increased the number of metal atoms in the Ln-Cr clusters. Magnetic calculations indicated that there was weak antiferromagnetic Gd···Cr coupling and weak ferromagnetic Gd···Gd coupling in 1, whereas both Gd···Cr and Gd···Gd in 3 exhibited weak antiferromagnetic interactions. Magnetothermal studies showed that compounds 1 and 3 displayed magnetic entropy changes of 25.2 J kg-1 K-1 at 5 K and 7 T and 33.8 J kg-1 K-1 at 2 K and 7 T, respectively.

15.
Angew Chem Int Ed Engl ; 59(34): 14409-14413, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32510687

ABSTRACT

Magnetodielectric response mechanisms are critical for the rational design and synthesis of molecule-based magnetodielectric materials. Herein, the magnetodielectric response was investigated in the molecule-based material [Fe3 O(CH3 COO)6 (py)3 ](py) (1). Its magnetodielectric coefficient (MD) is -2.8 % for phase transition III and -4.1 % for phase transition I. Study of the mechanism of the magnetodielectric response in 1 reveals that its magnetodielectric response at phase transition I is induced by the charge-frustration of the trinuclear iron cluster, while that at phase transition III is attributed to the spin-frustration of the trinuclear iron cluster, providing a new route for the design of magnetodielectric materials.

16.
J Am Chem Soc ; 141(17): 6822-6826, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30986355

ABSTRACT

Due to the structural advantages displayed by Metal-Organic Frameworks (MOFs), integrating Valence Tautomerism (VT) systems within MOFs could be an effective strategy in order to break through the constraints of the traditional ones. Herein, we report the first successful integration of a VT system into a MOF termed VT-MOF-1. The structural characteristics of VT-MOF-1, such as dinuclear cobalt-catechol clusters and solvent-accessible pores, are both innovative and novel, potentially yielding new vitality within VT field. In addition, VT-MOF-1 exhibits specific behaviors responsive to temperature and different solvent molecules as n-butanol, tert-butanol, and isopropyl alcohol. The entropy values and configurations of the solvent molecules might be responsible for the tunable sensing behaviors.

17.
J Am Chem Soc ; 140(44): 14581-14585, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30347976

ABSTRACT

Herein, we report the construction of a neutral, radical-rich, cobalt valence tautomeric triangle, which consists of two types of radical groups including tetrazine-based bridges and semiquinone anions at high temperature and has traits of high intensity and density of sensing sites. The mechanism of the Valence Tautomerism process within the triangle has been illustrated as one electron transfer, preceding a two electrons transfer along with the phenomenon of spin flipping.

18.
Inorg Chem ; 57(14): 8639-8645, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29962201

ABSTRACT

Two enantiomeric pairs of new 3d-4f heterometallic clusters have been built from two enantiomer Schiff base derivatives, labeled as R-/ S-H2L, in situ obtained from the condensation reactions with o-vanillin and R-/ S-2-phenylglycinol. The formulas of the series clusters are [Mn6Ln2(µ3-OH)4(µ4-O)(Ac)4(H2O)2( R-L)6]·NO3·OH (Ln = Dy (1R), Gd (2R)), [Mn6Ln2(µ3-OH)4(µ4-O)(Ac)4(H2O)2( S-L)6]·NO3·OH (Ln = Dy (1S), Gd (2S)), whose crystal structures and magnetic properties have been characterized. Structural analysis indicated that the above clusters consisted of a [Mn6Ln2] core, featuring a sandwich configuration. The results of magnetic measurements showed the presence of slow magnetic relaxation with the effective energy barrier of 14.85 K in two Dy derivatives under the condition of zero-dc field, while the significant magnetocaloric effect of Gd analogues was found in a wide temperature range.

19.
Inorg Chem ; 57(5): 2577-2583, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29465993

ABSTRACT

By utilizing a preselected functional ligand produced by 1 H-imidazole-4,5-dicarboxylic acid, three isostructural lanthanide coordination polymers (CPs), denoted as {[Ln2(OH)2(L)2]·(DMF)·(H2O)4} n (Ln = Gd (1), Eu (2), Dy (3); L = 1-(4-carboxybenzyl)imidazole-4-carboxylic acid), containing a 1D infinite [Ln4(OH)4] subchain have been successfully constructed. The highly connected mode between the multifunctional ligand and 1D building units is responsible for the exceptional chemical stability of three lanthanide CPs. In addition, a study of the magnetic properties reveals that 1 displays a large magnetic entropy change (-Δ Sm = 30.33 J kg-1 K-1 with T = 2 K and Δ H = 7 T). Furthermore, genetic algorithm and quantum Monte Carlo methods were combined to simulate the magnetic coupling parameters of compound 1, shedding light on the effect of linking bridges on magnetic propagation. 2 shows intense luminescence in the range of 350-710 nm. Comparably, magnetic studies of 3 reveal the existence of a metamagnetic transformation from an antiferromagnetic interaction to a ferromagnetic interaction along with a decrease in temperature. Through fitting of the results of HF-EPR measurements, a component of the g tensor is obtained, g|| = 16.4(5), indicating the large anisotropy of 3.

20.
J Am Chem Soc ; 139(50): 18178-18181, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29200280

ABSTRACT

Nanoscale inorganic wheel-shaped structures are one of the most striking types of molecular aggregations. Here, we report the synthesis of a gigantic lanthanide wheel cluster containing 140 Gd3+ atoms. As the largest lanthanide cluster reported thus far, {Gd140} features an attractive wheel-like structure with 10-fold symmetry. The nanoscopic molecular wheel possesses the largest diameter of 6.0 nm and displays high stability in solution, which allows direct visualization by scanning transmission electron microscopy. The newly discovered lanthanide {Gd140} cluster represents a new member of the molecular wheel family.

SELECTION OF CITATIONS
SEARCH DETAIL