Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Nano Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842083

ABSTRACT

The primary challenge for resonant-gravimetric gas sensors is the synchronous improvement of the sensitivity and response time, which is restricted by low adsorption capacity and slow mass transfer in the sensing process and remains a great challenge. In this study, a novel 2D/2D Cu-TCPP@ZnIn2S4 composite is successfully constructed, in which Cu-TCPP MOF is used as a core substrate for the growth of 2D ultrathin ZnIn2S4 nanosheets with well-defined {0001} crystalline facets. The Cu-TCPP@ZnIn2S4 sensor exhibited high sensitivity (1.5 Hz@50 and 2.3 Hz@100 ppb), limit of detection (LOD: 50 ppb), and ultrafast (9 s @500 ppb) detection of triethylamine (TEA), which is the lowest LOD and the fastest sensor among the reported TEA sensors at room temperature, tackling the bottleneck for the ultrafast detection of the resonant-gravimetric sensor. These above results provide an innovative and easily achievable pathway for the synthesis of heterogeneous structure sensing materials.

2.
Opt Express ; 32(3): 4639-4649, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297660

ABSTRACT

Dynamic tuning metasurfaces represent a significant advancement in optical encryption techniques, enabling highly secure multichannel responses. This paper proposes a liquid crystal (LC) tunable dual-layered metasurface to establish a thermal-encrypted optical platform for information storage. Through the screening of unit cells and coupling of characteristics, a dynamic polarization-dependent beam-steering metasurface is vertically cascaded with an angular multiplexing nanoprinting metasurface, separated by a dielectric layer. By integrating high-birefringence LCs into dual-layered metasurfaces, the cascaded meta-system can achieve dynamic thermal-switching for pre-encoded nanoprinting images. This work provides a promising solution for developing compact dynamic meta-systems for customized optical storage and information encryption.

3.
Opt Express ; 32(5): 6963-6976, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439389

ABSTRACT

Polarization modulation of electromagnetic waves plays an important role in the field of optics and optoelectronics. Current polarization optics are typically limited to the modulation in a single transverse plane. However, manipulating polarization along the longitudinal direction is also important for full-space polarization modulation. Here, we propose two kinds of all-dielectric terahertz metasurfaces for longitudinally spatial polarization manipulation. The metasurfaces are capable of controlling polarization along the propagation path, namely: i) a longitudinal bifocal metalens with different polarization states at each focal point, and ii) a versatile metalens can simultaneously generate a uniformly polarized focused beam and a vector beam with varying polarization along the propagation path. Furthermore, the measurement of the dielectric thickness is demonstrated based on the polarization modulation feature of the metalens. The proposed metasurfaces allow for effective polarization state alteration along the propagation path, exhibiting significant potential for applications in versatile light-matter interactions, optical communications, and quantum optics.

4.
Opt Lett ; 49(12): 3528-3531, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875662

ABSTRACT

The application of a liquid crystal (LC) in displays has driven the development of novel LC elements. In this Letter, polarization variable line-space (PVLS) gratings based on photoalignment are fabricated, and their variable-spacing properties are derived using the vector diffraction theory. Both transmissive and reflective PVLS gratings are fabricated to validate the correctness of the derivation. Experimental results indicate that PVLS gratings have a wider wavelength response bandwidth than that of polarization volume grating (PVG). PVLS gratings have angle selectivity, and a large incident angle causes wavelength blueshift. Additionally, the relationship between wavelength and focal length indicates its anomalous dispersion as a diffractive optical element. These results of photoalignment-based PVLS gratings provide valuable insights for the advancement of displays and have the potential to improve visual experiences.

5.
Phys Rev Lett ; 132(21): 213801, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856291

ABSTRACT

We theoretically construct a higher-order topological insulator (HOTI) on a Brillouin real projective plane enabled by momentum-space nonsymmorphic (k-NS) symmetries from synthetic gauge fields. Two anicommutative k-NS glide reflections appear in a checkerboard Z_{2} flux model, impose nonsymmorphic constraints on Berry curvature, and quantize bulk and Wannier-sector polarization nonlocally across different momenta. The model's bulk exhibits an isotropic quadrupole phase diagram, where the transition appears intrinsically from bulk gap closure. The model hosts the simultaneous presence of intrinsic and extrinsic HOTI features: in a ribbon geometry where one pair of boundaries gets open, the edge termination can induce boundary-obstructed topological phase within the symmetry-protected topological phase due to the breaking of k-NS symmetry. At last, we present a concrete design for the real projective plane quadrupole insulator and show how to measure the momentum glide reflection based on acoustic resonator arrays. Our results shed light on HOTIs on deformed Brillouin manifolds via k-NS symmetries.

6.
Opt Express ; 31(2): 3083-3091, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785307

ABSTRACT

Although structural colors based on nanostructures have attracted many researchers' attentions due to their superior durability and high resolution, most previous reports focused on the static and dynamic structural colors in reflection mode and few researchers focus on the static and dynamic transmission colors for high-saturation RGB models. Here, the hybrid Al-Si3N4 nanogratings with the top SiO2 capping layer and the bottom MgF2 layer that can switch full-hue and high-saturation transmitted structural colors on and off completely by changing the polarization state are theoretically demonstrated. Meanwhile, the hybrid Al-Si3N4 nanogratings with the top capping layer and the bottom layer also achieve the transmittance spectra with the full width at half maximum of ∼58 nm and the transmittance efficiency of over 70% in the on state. The added top capping layer and bottom layer can suppress the sideband of transmittance spectra in the on state and maintain the near-zero transmittance in the off state, thus improving the switching performance between bright and dark states. The realizable high-saturation colors in the on state can take up 125% sRGB space and 80% Adobe sRGB space. More interestingly, with the incident angle varying from 0° to 50°, full-hue color can be also realized in the on state and nearly black color can be also maintained in the off state. The strategy will provide potential applications in advanced color encryption and multichannel imaging.

7.
Opt Express ; 31(6): 10905-10917, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157626

ABSTRACT

Achromatic bifunctional metasurface is of great significance in optical path miniaturization among advanced integrated optical systems. However, the reported achromatic metalenses mostly utilize a phase compensate scheme, which uses geometric phase to realize the functionality and uses transmission phase to compensate the chromatic aberration. In the phase compensation scheme, all the modulation freedoms of a nanofin are driven at the same time. This makes most of the broadband achromatic metalenses restricted to realizing single function. Also, the phase compensate scheme is always addressed with circularly polarized (CP) incidence, leading to a limitation in efficiency and optical path miniaturization. Moreover, for a bifunctional or multifunctional achromatic metalens, not all the nanofins will work at the same time. Owing to this, achromatic metalenses using a phase compensate scheme are usually of low focusing efficiencies. To this end, based on the pure transmission phase in the x-/y- axis provided by the birefringent nanofins structure, we proposed an all-dielectric polarization-modulated broadband achromatic bifunctional metalens (BABM) in the visible light. Applying two independent phases on one metalens at the same time, the proposed BABM realizes achromatism in a bifunctional metasurface. Releasing the freedom of nanofin's angular orientation, the proposed BABM breaks the dependence on CP incidence. As an achromatic bifunctional metalens, all the nanofins on the proposed BABM can work at the same time. Simulation results show that the designed BABM is capable of achromatically focusing the incident beam to a single focal spot and an optical vortex (OV) under the illumination of x- and y-polarization, respectively. In the designed waveband 500 nm (green) to 630 nm (red), the focal planes stay unchanged at the sampled wavelengths. Simulation results prove that the proposed metalens not only realized bifunctional achromatically, but also breaks the dependence of CP incidence. The proposed metalens has a numerical aperture of 0.34 and efficiencies of 33.6% and 34.6%. The proposed metalens has advantages of being flexible, single layer, convenient in manufacturing, and optical path miniaturization friendly, and will open a new page in advanced integrated optical systems.

8.
Opt Express ; 31(7): 11940-11953, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155817

ABSTRACT

This study proposed the synergistic merging of twisted-nematic liquid crystals (LCs) and nanograting embedded etalon structures for plasmonic structure color generation, realizing dynamic multifunctional metadevices. Metallic nanogratings and dielectric cavities were designed to provide color selectivity at visible wavelengths. Meanwhile, the polarization for the transmission of light could be actively manipulated by electrically modulating these integrated LCs. Moreover, manufacturing independent metadevices as single storage units with electrically controlled programmability and addressability facilitated secure information encoding and secretive transfer by dynamic high-contrast images. The approaches will pave the way for the development of customized optical storage devices and information encryption.

9.
Opt Express ; 31(18): 29792-29812, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37710772

ABSTRACT

This paper proposes applying the nested U2-Net to a two-dimensional phase unwrapping (PU). PU has been a classic well-posed problem since conventional PU methods are always limited by the Itoh condition. Numerous studies conducted in recent years have discovered that data-driven deep learning techniques can overcome the Itoh constraint and significantly enhance PU performance. However, most deep learning methods have been tested only on Gaussian white noise in a single environment, ignoring the more widespread scattered noise in real phases. The difference in the unwrapping performance of deep network models with different strategies under the interference of different kinds of noise or drastic phase changes is still unknown. This study compares and tests the unwrapping performance of U-Net, DLPU-Net, VUR-Net, PU-GAN, U2-Net, and U2-Netp under the interference of additive Gaussian white noise and multiplicative speckle noise by simulating the complex noise environment in the real samples. It is discovered that the U2-Net composed of U-like residual blocks performs stronger anti-noise performance and structural stability. Meanwhile, the wrapped phase of different heights in a high-level noise environment was trained and tested, and the network model was qualitatively evaluated from three perspectives: the number of model parameters, the amount of floating-point operations, and the speed of PU. Finally, 421 real-phase images were also tested for comparison, including dynamic candle flames, different arrangements of pits, different shapes of grooves, and different shapes of tables. The PU results of all models are quantitatively evaluated by three evaluation metrics (MSE, PSNR, and SSIM). The experimental results demonstrate that U2-Net and the lightweight U2-Netp proposed in this work have higher accuracy, stronger anti-noise performance, and better generalization ability.

10.
Opt Express ; 31(4): 5757-5766, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823848

ABSTRACT

Perfect vortex beams can only propagate stably with integer topological charges. Thus, creating perfect fractional vortex beams capable of stable propagation in free space, as perfect integer vortex beams, is crucial. This study proposed perfect vortex beams carrying fractional topological charge of l + 0.5, which are special solutions of the wave equation, and can maintain stable propagation with physical laws same as integer topological charge. Perfect fractional vortex beams were created in free space, which can break the cognition of traditional fractional perfect vortex beams and promote the development of scientific fields such as optical communication, quantum sensing, and optical imaging.

11.
Opt Express ; 31(9): 15179-15188, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157365

ABSTRACT

Vector vortex beams are widely used because of their anisotropic vortex polarization state and spiral phase. Constructing mixed mode vector vortex beams in free space still requires complex designs and calculations. We propose a method for generating mixed mode vector Elliptical perfect optical vortex (EPOV) arrays in free space by mode extraction and optical pen. It is demonstrated that the long axis and short axis of EPOVs are not limited by the topological charge (TC). Flexible modulation of parameters in the array is achieved, including number, position, ellipticity, ring size, TC, and polarization mode. This approach is simple and effective, it will provide a powerful optical tool for optical tweezers, particle manipulation, and optical communication.

12.
Opt Lett ; 48(15): 4125-4128, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37527134

ABSTRACT

Metasurface-based optical encryption techniques have garnered significant attention due to their ultracompact nature and ability to support multichannel optical responses. Here, we present a liquid-crystal (LC)-integrated metasurface that enables polarized-encrypted amplitude and phase multiplexing. This approach allows for simultaneously realizing trifold displays of both meta-holography and meta-nanoprinting. By combining propagation and geometric phase modulation, we meticulously screen the unit cells of the metasurface, establishing a comprehensive structural dictionary. As a proof-of-concept, we developed an electrically driven advanced optical encryption platform that boasts multifunctional channels and two-level encryption capabilities. This study paves the way for advanced optical encryption and identification techniques.

13.
Opt Lett ; 48(4): 851-854, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790957

ABSTRACT

In this Letter, we demonstrate a deep-learning-based method capable of synthesizing a photorealistic 3D hologram in real-time directly from the input of a single 2D image. We design a fully automatic pipeline to create large-scale datasets by converting any collection of real-life images into pairs of 2D images and corresponding 3D holograms and train our convolutional neural network (CNN) end-to-end in a supervised way. Our method is extremely computation-efficient and memory-efficient for 3D hologram generation merely from the knowledge of on-hand 2D image content. We experimentally demonstrate speckle-free and photorealistic holographic 3D displays from a variety of scene images, opening up a way of creating real-time 3D holography from everyday pictures.

14.
Sensors (Basel) ; 23(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687890

ABSTRACT

The rapid development of cloud computing and deep learning makes the intelligent modes of applications widespread in various fields. The identification of Raman spectra can be realized in the cloud, due to its powerful computing, abundant spectral databases and advanced algorithms. Thus, it can reduce the dependence on the performance of the terminal instruments. However, the complexity of the detection environment can cause great interferences, which might significantly decrease the identification accuracies of algorithms. In this paper, a deep learning algorithm based on the Dense network has been proposed to satisfy the realization of this vision. The proposed Dense convolutional neural network has a very deep structure of over 40 layers and plenty of parameters to adjust the weight of different wavebands. In the kernel Dense blocks part of the network, it has a feed-forward fashion of connection for each layer to every other layer. It can alleviate the gradient vanishing or explosion problems, strengthen feature propagations, encourage feature reuses and enhance training efficiency. The network's special architecture mitigates noise interferences and ensures precise identification. The Dense network shows more accuracy and robustness compared to other CNN-based algorithms. We set up a database of 1600 Raman spectra consisting of 32 different types of liquid chemicals. They are detected using different postures as examples of interfered Raman spectra. In the 50 repeated training and testing sets, the Dense network can achieve a weighted accuracy of 99.99%. We have also tested the RRUFF database and the Dense network has a good performance. The proposed approach advances cloud-enabled Raman spectra identification, offering improved accuracy and adaptability for diverse identification tasks.

15.
Molecules ; 28(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903349

ABSTRACT

Undoubtedly, SARS-CoV-2 has caused an outbreak of pneumonia that evolved into a worldwide pandemic. The confusion of early symptoms of the SARS-CoV-2 infection with other respiratory virus infections made it very difficult to block its spread, leading to the expansion of the outbreak and an unreasonable demand for medical resource allocation. The traditional immunochromatographic test strip (ICTS) can detect one analyte with one sample. Herein, this study presents a novel strategy for the simultaneous rapid detection of FluB/SARS-CoV-2, including quantum dot fluorescent microspheres (QDFM) ICTS and a supporting device. The ICTS could be applied to realize simultaneous detection of FluB and SARS-CoV-2 with one test in a short time. A device supporting FluB/SARS-CoV-2 QDFM ICTS was designed and had the characteristics of being safe, portable, low-cost, relatively stable, and easy to use, ensuring the device could replace the immunofluorescence analyzer in cases where there is no need for quantification. This device does not need to be operated by professional and technical personnel and has commercial application potential.


Subject(s)
COVID-19 , Quantum Dots , Humans , SARS-CoV-2 , Limit of Detection , Quantum Dots/chemistry
16.
Int Ophthalmol ; 43(12): 4781-4789, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37695496

ABSTRACT

PURPOSE: This study was conducted to compare the ocular surface temperature in keratoconus eyes with that in normal eyes. METHODS: A total of 27 participants were enrolled, with 10 and 17 participants in the keratoconus and control groups, respectively. Participants in the control group underwent an ophthalmic slit lamp examination and ocular thermography, while an additional corneal tomography was performed for those in the keratoconus group. RESULTS: For patients with keratoconus, the mean upper eyelid temperature (UET) was 32.36 ± 1.02 °C, inner canthus temperature (ICT) was 34.25 ± 0.83 °C, outer canthus temperature (OCT) was 33.62 ± 0.96 °C, initial central corneal temperature (initial CCT) was 33.04 ± 1.03 °C, sixth-second CCT (6 s-CCT) was 32.67 ± 1.19 °C, and the mean change in CCT measured within 6 s (change in CCT within 6 s) was 0.36 ± 0.26 °C. For controls, the values for UET, ICT, OCT, initial CCT, 6 s-CCT, and change in CCT within 6 s were 32.35 ± 1.13 °C, 34.14 ± 0.91 °C, 33.51 ± 1.02 °C, 33.22 ± 1.01 °C, 32.99 ± 1.01 °C, and 0.22 ± 0.17 °C, respectively. Except for the change in CCT within 6 s (p = 0.022), no significant differences were observed in UET (p = 0.973), ICT (p = 0.659), OCT (p = 0.697), initial CCT (p = 0.556) or 6 s-CCT (p = 0.310) between the two groups. CONCLUSION: The keratoconus eyes showed faster changes in CCT and evaporation of tear film after opening the eyes. Therefore, the keratoconus eyes had a higher incidence of dry eye conditions.


Subject(s)
Dry Eye Syndromes , Keratoconus , Humans , Keratoconus/complications , Keratoconus/diagnosis , Temperature , Cornea , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/etiology , Thermography
17.
Opt Express ; 30(8): 13372-13390, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35472951

ABSTRACT

The development of electronic industry demands miniaturization for zoom lens. Freeform surfaces and catadioptric lens system play important roles in the compactness of optical design. However, the initial structure of the catadioptric system is relatively rare and repeated optimizing in first-order lens design requires advanced knowledge and experiences. That brings challenges for establishing an initial structure for the freeform catadioptric zoom system, which is essential for optical designers. In this work, an automatic design method for the initial structure of a catadioptric system with freeform surface and zoom lens is proposed. As long as the focal length range and total length are determined, the initial structure of the catadioptric zoom lens with arbitrary zoom ratio in a certain range can be obtained for further analysis and optimization. The rapid design method reduces the dependence on experience for catadioptric system design, saves considerable time and can help to ease the difficulty in finding the initial structure of slim zoom lens.

18.
Opt Express ; 30(10): 16699-16711, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221507

ABSTRACT

Metasurface antennas scatter traveling guided waves into spatial waves, which act as extendable subsources to overcome the size limitation on emission sources. With the use of a Pancharatnam-Berry phase metasurface stimulated by a circularly polarized wave in a waveguide, the local phase distributions of scattered spatial waves can be made consistent with those of an Airy beam, thereby allowing the generation of high-quality Airy beams. In a slab waveguide, circularly polarized waves are synthesized through superposition of in-plane transverse electric modes. Simulations demonstrate that a 20 mm × 20 mm footprint all-dielectric guided wave-driven metasurface generates a 2D Airy beam at a frequency of 0.6 THz. Furthermore, we employ a metasurface deposited on a strip waveguide to generate a 1D Airy beam under direct stimulation by the fundamental transverse electric mode. Our work not only provides a large-scale emitter, but it also suggests promising potential applications in on-chip imaging and holography.

19.
Opt Express ; 30(18): 33222-33228, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242367

ABSTRACT

In this paper, a chiral excitation method based on the asymmetric interface condition is proposed. The chiral characteristics of the metamaterials are affected by the difference in the environmental parameters of the front and rear surfaces. Thus, the device can achieve functional reconfiguration and two applications based on this mechanism are presented, one for sensing and the other for chiral switching. At the same time, a self-calibration measurement method that greatly simplifies the sensing system is proposed. These results have potential applications in the fields of chirality excitation, bio-sensing, and reconfigurable device.

20.
Opt Express ; 30(18): 31959-31970, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242267

ABSTRACT

Recently, perfect optical vortexes (POVs) have attracted substantial attention, because they have an orbital angular momentum (OAM) and the beam diameter is independent of the topological charges. There are numerous innovative results that have been found by modulating the POV optical field. However, methods for controlling the arbitrary parameters of POV are lacking. In this paper, we use the optical pen to overcome this problem. The optical pen is a high-precision optical field modulation method construction based on the relationship between the optical path difference and phase. Based on this method, we have achieved POV arrays with controllable arbitrary parameters in free space, including the spatial position, numbers, topological charges, beam diameter, and amplitude. This work can be applied not only in the fields of optical tweezers, particle manipulation, and super-resolution microscopic imaging, but also will promote the development of optical communication, quantum information coding, and so on.

SELECTION OF CITATIONS
SEARCH DETAIL