Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Publication year range
1.
Molecules ; 28(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36838656

ABSTRACT

UPII-mutant Ha-ras transgenic mice develop urothelial hyperplasia and low-grade papillary carcinoma, which mimics human non-muscle invasive bladder cancer (NMIBC). We investigated the effects and mechanisms of kawain, a main kavalactone in the kava plant, on oncogenic Ha-ras-driven urothelial carcinoma in these mice. The mice were fed at six weeks of age with vehicle control or kawain (6 g/kg) formulated food for approximately five months. Seventy-eight percent of the mice or more fed with kawain food survived more than six months of age, whereas only 32% control food-fed male mice survived, (p = 0.0082). The mean wet bladder weights (a surrogate for tumor burden) of UPII-mutant Ha-ras transgenic mice with kawain diet was decreased by approximately 56% compared to those fed with the control diet (p = 0.035). The kawain diet also significantly reduced the occurrence of hydronephrosis and hematuria in UPII-mutant Ha-ras transgenic mice. Histological examination and immunohistochemistry analysis revealed that vehicle control-treated mice displayed more urothelial carcinoma and Ki67-positive cells in the bladder compared to kawain treated mice. Global metabolic profiling of bladder tumor samples from mice fed with kawain food showed significantly more enrichment of serotonin and less abundance of xylulose, prostaglandin A2, D2 and E2 compared to those from control diet-fed mice, suggesting decreased shunting of glucose to the pentose phosphate pathway (PPP) and reduced inflammation. In addition, kawain selectively inhibited the growth of human bladder cancer cell lines with a significant suppression of 4E-BP1 expression and rpS6 phosphorylation. These observations indicate a potential impact of kawain consumption on bladder cancer prevention by rewiring the metabolic programs of the tumor cells.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Animals , Mice , Cell Transformation, Neoplastic , Mice, Transgenic , TOR Serine-Threonine Kinases , Urinary Bladder Neoplasms/pathology
2.
Mol Carcinog ; 59(2): 193-201, 2020 02.
Article in English | MEDLINE | ID: mdl-31782573

ABSTRACT

Gartanin, a 4-prenylated xanthone, has been identified from the purple mangosteen fruit as a potent growth inhibitor of various cancer cell lines, including prostate cancer. However, much of Gartanin's anticancer mechanism remains unknown. We have discovered that Gartanin docked onto the regulatory subunit of the precursor cell-expressed developmentally downregulated 8 (NEDD8)-activating enzyme (NAE) complex and next to the NEDD8 binding complex, which leads to inhibit NEDD8 conjugations to both Cullin1 and Ubc12 in prostate cancer cell lines and Ubc12 NEDDylation in an in vitro assay. The S phase kinase-associated protein (Skp2) and F-box and WD-repeat domain-containing 2 (FBXW2), the NEDD8 family members of E3 ubiqutin ligases, were also downregulated and upregulated by Gartainin, respectively. Knock-down of NEDD8 expression by short harpin (Sh) RNAs blocked or attenuated these effects of Gartainin. Finally, Gartanin demonstrated its ability to inhibit growth of prostate cancer lines via autophagy initiation. Our data support that Gartanin is a naturally occurring NEDDylation inhibitor and deserves further investigation for prostate cancer prevention and treatment.


Subject(s)
Autophagy/drug effects , F-Box Proteins/metabolism , NEDD8 Protein/antagonists & inhibitors , Prostatic Neoplasms/metabolism , S-Phase Kinase-Associated Proteins/metabolism , Xanthones/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , F-Box Proteins/genetics , Humans , Male , NEDD8 Protein/metabolism , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA Interference
3.
Cell Commun Signal ; 17(1): 25, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30885218

ABSTRACT

BACKGROUND: Flavokawain B (FKB) has been identified from kava root extracts as a potent apoptosis inducer for inhibiting the growth of various cancer cell lines, including prostate cancer. However, the molecular targets of FKB in prostate cancer cells remain unknown. METHODS: An in vitro NEDD8 Initiation Conjugation Assay was used to evaluate the neddylation inhibitory activity of FKB. Molecular docking and a cellular thermal shift assay were performed to assess the direct interaction between FKB and the NEDD8 activating enzyme (NAE) complex. Protein neddylation, ubiqutination, stability and expression in cells were assessed with immunoprecipitation and Western blotting methods using specific antibodies. Deletion and site specific mutants and siRNAs were used to evaluate deep mechanisms by which FKB induces Skp2 degradation. Cell growth inhibition and apoptosis induction were measured by MTT, ELISA and Western blotting methods. RESULTS: FKB inhibits NEDD8 conjugations to both Cullin1 and Ubc12 in prostate cancer cell lines and Ubc12 neddylation in an in vitro assay. Molecular docking study and a cellular thermal shift assay reveal that FKB interacts with the regulatory subunit (i.e. APP-BP1) of the NAE. In addition, FKB causes Skp2 degradation in an ubiquitin and proteasome dependent manner. Overexpression of dominant-negative cullin1 (1-452), K720R mutant (the neddylation site) Cullin1 or the F-box deleted Skp2 that losses its binding to the Skp1/Cullin1 complex causes the resistance to FKB-induced Skp2 degradation, whereas siRNA knock-down of Cdh1, a known E3 ligase of Skp2 for targeted degradation, didn't attenuate the effect of FKB on Skp2 degradation. These results suggest that degradation of Skp2 by FKB is involved in a functional Cullin1. Furthermore, proteasome inhibitors Bortezomib and MG132 transcriptionally down-regulate the expression of Skp2, and their combinations with FKB result in enhanced inhibitory effects on the growth of prostate cancer cell lines via synergistic down-regulation of Skp2 and up-regulation of p27/Kip1 and p21/WAF1 protein expression. FKB also selectively inhibits the growth of RB deficient cells with high expression of Skp2. CONCLUSION: These findings provide a rationale for further investigating combination of FKB and Bortezomib for treatment of RB deficient, castration-resistant prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Flavonoids/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , S-Phase Kinase-Associated Proteins/metabolism , Antigens, CD/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Bortezomib/therapeutic use , Cadherins/metabolism , Cell Proliferation/drug effects , Cullin Proteins/metabolism , Flavonoids/therapeutic use , Humans , Leupeptins/pharmacology , Leupeptins/therapeutic use , Male , NEDD8 Protein/metabolism , PC-3 Cells , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
4.
Carcinogenesis ; 39(8): 1026-1036, 2018 07 30.
Article in English | MEDLINE | ID: mdl-29762656

ABSTRACT

Prostate cancer remains a major health problem in the USA and worldwide. There is an urgent need to develop novel approaches to preventing primary and metastatic prostate cancer. We have identified 25-OCH3-protopanaxadiol (GS25), the most active ginsenoside that has been identified so far; it has potent activity against human cancers, including prostate cancer. However, it has not been proven if GS25 could be a safe and effective agent for cancer prevention. In this study, we used the TRAMP model and clearly demonstrated that GS25 inhibited prostate tumorigenesis and metastasis with minimal host toxicity. Mechanistically, GS25 directly bound to the RING domain of MDM2, disrupted MDM2-MDMX binding and induced MDM2 protein degradation, resulting in strong inhibition of prostate cancer cell growth and metastasis, independent of p53 and androgen receptor status. In conclusion, our in vitro and in vivo data support the potential use of GS25 in prevention of primary and metastatic prostate cancer.


Subject(s)
Prostatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Triterpenes/pharmacology , Animals , Cell Cycle Proteins , Cell Line, Tumor , Disease Models, Animal , Drug Screening Assays, Antitumor , Humans , Male , Mice , Mice, Transgenic , Nuclear Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Binding/drug effects , Proteolysis/drug effects , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , RING Finger Domains/drug effects , Triterpenes/therapeutic use
5.
Mol Divers ; 21(4): 933-942, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28785928

ABSTRACT

Novel phenothiazine-dithiocarbamate analogues were designed by molecular hybridization strategy and synthesized and evaluated for their anticancer activity in vitro against three selected cancer cell lines (EC-109, MGC-803, and PC-3). The preliminary structure-activity relationship (SAR) for this phenothiazine-dithiocarbamate hybrids is explored. Among all analogues, 2-oxo-2-(10H-phenothiazin-10-yl)ethyl 4-ethylpiperazine-1-carbodithioate (8a) showed the most potent inhibitory activity with an [Formula: see text] value of [Formula: see text] against PC-3 cells. In addition, compound 8a could arrest the cell cycle at the G1 phase and regulate the expression of G1 checkpoint-related proteins, suggesting that phenothiazine-dithiocarbamate hybrids might be useful as cell cycle blockers.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Drug Design , Phenothiazines/chemical synthesis , Phenothiazines/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Drug Screening Assays, Antitumor , Humans , Phenothiazines/chemistry , Structure-Activity Relationship
6.
Molecules ; 22(3)2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28335434

ABSTRACT

HER2/neu positive breast tumors predict a high mortality and comprise 25%-30% of breast cancer. We have shown that Flavokawain A (FKA) preferentially reduces the viabilities of HER2-overexpressing breast cancer cell lines (i.e., SKBR3 and MCF7/HER2) versus those with less HER2 expression (i.e., MCF7 and MDA-MB-468). FKA at cytotoxic concentrations to breast cancer cell lines also has a minimal effect on the growth of non-malignant breast epithelial MCF10A cells. FKA induces G2M arrest in cell cycle progression of HER2-overexpressing breast cancer cell lines through inhibition of Cdc2 and Cdc25C phosphorylation and downregulation of expression of Myt1 and Wee1 leading to increased Cdc2 kinase activities. In addition, FKA induces apoptosis in SKBR3 cells by increasing the protein expression of Bim and BAX and decreasing expression of Bcl2, BclX/L, XIAP, and survivin. FKA also downregulates the protein expression of HER-2 and inhibits AKT phosphorylation. Herceptin plus FKA treatment leads to an enhanced growth inhibitory effect on HER-2 overexpressing breast cancer cell lines through downregulation of Myt1, Wee1, Skp2, survivin, and XIAP. Our results suggest FKA as a promising and novel apoptosis inducer and G2 blocking agent that, in combination with Herceptin, enhances for the treatment of HER2-overexpressing breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Chalcone/analogs & derivatives , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology , Breast Neoplasms/drug therapy , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Chalcone/pharmacology , Drug Screening Assays, Antitumor , Drug Synergism , Female , G2 Phase Cell Cycle Checkpoints , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells
7.
Toxicol Appl Pharmacol ; 309: 77-86, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27594528

ABSTRACT

A new series of 20 brominated chalcone derivatives were designed, synthesized, and investigated for their effects against the growth of four cancer cell lines (EC109, SKNSH, HepG2, MGC803). Among them, compound 19 which given chemical name of H72, was the most potent one on gastric cancer cell lines (i.e. MGC803, HGC27, SGC7901) with IC50s ranged from 3.57 to 5.61µM. H72 exhibited less cytotoxicity to non-malignant gastric epithelial cells GES-1. H72 treatment of MGC803 and HGC27 induced generation of reactive oxygen species (ROS) leading to activation of caspase 9/3 cascade and mitochondria mediated apoptosis. H72 also up-regulated the expression of DR5, DR4 and BimEL, and down-regulated the expression of Bid, Bcl-xL, and XIAP. N-acetyl cysteine (NAC), a ROS scavenger completely blocked these effects of H72 in MGC803 cells. Intraperitoneal administration of H72 significantly inhibited the growth of MGC803 cells in vivo in a xenograft mouse model without observed toxicity. These results indicated that H72 is a lead brominated chalcone derivate and deserves further investigation for prevention and treatment of gastric cancer.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Chalcones/pharmacology , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Stomach Neoplasms/pathology , Up-Regulation/drug effects , Animals , Bromine/chemistry , Cell Line, Tumor , Chalcones/chemistry , Heterografts , Humans , In Vitro Techniques , Mice , Reactive Oxygen Species/metabolism , Stomach Neoplasms/metabolism
8.
Mol Cancer ; 14: 86, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25890345

ABSTRACT

BACKGROUND: Neuropilin 2 (NRP2) isa multi-functional co-receptor to many receptors, including VEGF receptor, c-Met and others. NRP2 has recently been implicated in tumor angiogenesis, growth, and metastasis of many other cancers. However, its role in osteosarcoma remains poorly understood. RESULTS: NRP2 was overexpressed in osteosarcoma cell lines and tissues, and associated with poor survival of osteosarcoma patients. Knockdown of NRP2 expression by short-hairpin (Sh) RNA resulted in reduced tumor growth, metastasis, and blood vessel formation of osteosarcoma. Knockdown of NRP2 expression by ShRNA also inhibited the recruitment of HUVEC cells to osteosarcoma cells. Inhibition of Wnt signaling by overexpression of secreted Wnt antagonists soluble LRP5, Frzb, and WIF1 markedly down-regulated mRNA and protein expression of NRP2 in osteosarcoma cell lines. CONCLUSIONS: Regulation of NRP2 receptor expression may represent a novel approach for treatment of osteosarcoma through retarding osteosarcoma growth, metastasis and blood vessel formation. In addition, down-regulation of NRP2 expression can be achieved by expression of secreted Wnt antagonists.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Neuropilin-2/genetics , Osteosarcoma/genetics , Osteosarcoma/metabolism , Wnt Proteins/antagonists & inhibitors , Animals , Bone Neoplasms/pathology , Cell Adhesion/genetics , Disease Models, Animal , Down-Regulation , Gene Knockdown Techniques , Heterografts , Humans , Lung Neoplasms/secondary , Male , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neovascularization, Pathologic/genetics , Osteosarcoma/mortality , Osteosarcoma/pathology , Prognosis , RNA, Small Interfering/genetics , Wnt Signaling Pathway
9.
Toxicol Appl Pharmacol ; 282(2): 227-36, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25450480

ABSTRACT

Jaridonin, a novel diterpenoid from Isodon rubescens, has been shown previously to inhibit proliferation of esophageal squamous cancer cells (ESCC) through G2/M phase cell cycle arrest. However, the involved mechanism is not fully understood. In this study, we found that the cell cycle arrest by Jaridonin was associated with the increased expression of phosphorylation of ATM at Ser1981 and Cdc2 at Tyr15. Jaridonin also resulted in enhanced phosphorylation of Cdc25C via the activation of checkpoint kinases Chk1 and Chk2, as well as in increased phospho-H2A.X (Ser139), which is known to be phosphorylated by ATM in response to DNA damage. Furthermore, Jaridonin-mediated alterations in cell cycle arrest were significantly attenuated in the presence of NAC, implicating the involvement of ROS in Jaridonin's effects. On the other hand, addition of ATM inhibitors reversed Jaridonin-related activation of ATM and Chk1/2 as well as phosphorylation of Cdc25C, Cdc2 and H2A.X and G2/M phase arrest. In conclusion, these findings identified that Jaridonin-induced cell cycle arrest in human esophageal cancer cells is associated with ROS-mediated activation of ATM-Chk1/2-Cdc25C pathway.


Subject(s)
Antineoplastic Agents/toxicity , Ataxia Telangiectasia Mutated Proteins/metabolism , CDC2 Protein Kinase/metabolism , Cell Division/drug effects , Checkpoint Kinase 2/metabolism , Diterpenes, Kaurane/toxicity , Esophageal Neoplasms/drug therapy , G2 Phase/drug effects , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Cell Cycle/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1 , Esophageal Neoplasms/pathology , Glutathione/metabolism , Humans , Phosphorylation
10.
Mol Cancer Ther ; 23(6): 854-863, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38417139

ABSTRACT

Docetaxel has been the standard first-line chemotherapy for lethal metastatic prostate cancer (mPCa) since 2004, but resistance to docetaxel treatment is common. The molecular mechanisms of docetaxel resistance remain largely unknown and could be amenable to interventions that mitigate resistance. We have recently discovered that several docetaxel-resistant mPCa cell lines exhibit lower uptake of cellular copper and uniquely express higher levels of a copper exporter protein ATP7B. Knockdown of ATP7B by silencing RNAs (siRNA) sensitized docetaxel-resistant mPCa cells to the growth-inhibitory and apoptotic effects of docetaxel. Importantly, deletions of ATP7B in human mPCa tissues predict significantly better survival of patients after their first chemotherapy than those with wild-type ATP7B (P = 0.0006). In addition, disulfiram (DSF), an FDA-approved drug for the treatment of alcohol dependence, in combination with copper, significantly enhanced the in vivo antitumor effects of docetaxel in a docetaxel-resistant xenograft tumor model. Our analyses also revealed that DSF and copper engaged with ATP7B to decrease protein levels of COMM domain-containing protein 1 (COMMD1), S-phase kinase-associated protein 2 (Skp2), and clusterin and markedly increase protein expression of cyclin-dependent kinase inhibitor 1 (p21/WAF1). Taken together, our results indicate a copper-dependent nutrient vulnerability through ATP7B exporter in docetaxel-resistant prostate cancer for improving the therapeutic efficacy of docetaxel.


Subject(s)
Adenosine Triphosphatases , Cation Transport Proteins , Copper-Transporting ATPases , Copper , Disulfiram , Docetaxel , Drug Resistance, Neoplasm , Prostatic Neoplasms , Taxoids , Xenograft Model Antitumor Assays , Male , Humans , Disulfiram/pharmacology , Disulfiram/therapeutic use , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Docetaxel/pharmacology , Docetaxel/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Taxoids/pharmacology , Taxoids/therapeutic use , Animals , Cell Line, Tumor , Mice , Adenosine Triphosphatases/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects
11.
Int J Biol Macromol ; 254(Pt 3): 126801, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37689288

ABSTRACT

Histone lysine-specific demethylase 1 (LSD1) expression has been evaluated in multiple tumors, including gastric cancer (GC). However, the mechanisms underlying LSD1 dysregulation in GC remain largely unclear. In this study, neural precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) was identified to be conjugated to LSD1 at K63 by ubiquitin-conjugating enzyme E2 M (UBE2M), and this neddylated LSD1 could promote LSD1 ubiquitination and degradation, leading to a decrease of GC cell stemness and chemoresistance. Herein, our findings revealed a novel mechanism of LSD1 neddylation and its contribution to decreasing GC cell stemness and chemoresistance. Taken together, our findings may whistle about the future application of neddylation inhibitors.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Drug Resistance, Neoplasm , Ubiquitination , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Histone Demethylases
12.
Clin Transl Med ; 14(3): e1627, 2024 03.
Article in English | MEDLINE | ID: mdl-38515274

ABSTRACT

PURPOSE: Our preclinical studies showed that lycopene enhanced the anti-prostate cancer efficacy of docetaxel in animal models. A phase I trial (NCT0149519) was conducted to identify an optimum dose of synthetic lycopene in combination with docetaxel (and androgen blockade [androgen deprivation therapy, ADT]), and to evaluate its effect on the safety and pharmacokinetics of docetaxel in men with metastatic prostate cancer. METHODS: Subjects were treated with 21-day cycles of 75 mg/m2 docetaxel (and ADT), plus lycopene at 30, 90 or 150 mg/day. A Bayesian model averaging continual reassessment method was used to guide dose escalation. Pharmacokinetics of docetaxel and multiple correlative studies were carried out. RESULTS: Twenty-four participants were enrolled, 18 in a dose escalation cohort to define the maximum tolerated dose (MTD), and six in a pharmacokinetic cohort. Docetaxel/ADT plus 150 mg/day synthetic lycopene resulted in dose-limiting toxicity (pulmonary embolus) in one out of 12 participants with an estimated probability of .106 and thus was chosen as the MTD. Lycopene increased the AUCinf and Cmax of plasma docetaxel by 9.5% and 15.1%, respectively. Correlative studies showed dose-related changes in circulating endothelial cells and vascular endothelial growth factor A, and reduction in insulin-like growth factor 1R phosphorylation, associated with lycopene therapy. CONCLUSIONS: The combination of docetaxel/ADT and synthetic lycopene has low toxicity and favourable pharmacokinetics. The effects of lycopene on biomarkers provide additional support for the toxicity-dependent MTD definition. HIGHLIGHTS: The maximum tolerated dose was identified as 150 mg/day of lycopene in combination with docetaxel/ADT for the treatment of metastatic prostate cancer patients. Small increases in plasma exposure to docetaxel were observed with lycopene co-administration. Mechanistically significant effects were seen on angiogenesis and insulin-like growth factor 1 signalling by lycopene co-administration with docetaxel/ADT.


Subject(s)
Prostatic Neoplasms , Male , Humans , Docetaxel , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Lycopene/therapeutic use , Vascular Endothelial Growth Factor A , Androgen Antagonists/therapeutic use , Androgens/therapeutic use , Bayes Theorem , Endothelial Cells/pathology
13.
Oncogene ; 43(13): 962-975, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355807

ABSTRACT

Osteosarcoma(OS) is a highly aggressive bone cancer for which treatment has remained essentially unchanged for decades. Although OS is characterized by extensive genomic heterogeneity and instability, RB1 and TP53 have been shown to be the most commonly inactivated tumor suppressors in OS. We previously generated a mouse model with a double knockout (DKO) of Rb1 and Trp53 within cells of the osteoblastic lineage, which largely recapitulates human OS with nearly complete penetrance. SKP2 is a repression target of pRb and serves as a substrate recruiting subunit of the SCFSKP2 complex. In addition, SKP2 plays a central role in regulating the cell cycle by ubiquitinating and promoting the degradation of p27. We previously reported the DKOAA transgenic model, which harbored a knock-in mutation in p27 that impaired its binding to SKP2. Here, we generated a novel p53-Rb1-SKP2 triple-knockout model (TKO) to examine SKP2 function and its potential as a therapeutic target in OS. First, we observed that OS tumorigenesis was significantly delayed in TKO mice and their overall survival was markedly improved. In addition, the loss of SKP2 also promoted an apoptotic microenvironment and reduced the stemness of DKO tumors. Furthermore, we found that small-molecule inhibitors of SKP2 exhibited anti-tumor activities in vivo and in OS organoids as well as synergistic effects when combined with a standard chemotherapeutic agent. Taken together, our results suggest that SKP2 inhibitors may reduce the stemness plasticity of OS and should be leveraged as next-generation adjuvants in this cancer.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Humans , Mice , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Carcinogenesis , Cyclin-Dependent Kinase Inhibitor p27/genetics , Mice, Knockout , Osteosarcoma/drug therapy , Osteosarcoma/genetics , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Tumor Microenvironment
14.
J Clin Invest ; 134(10)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546787

ABSTRACT

Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.


Subject(s)
Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases , Prostatic Neoplasms, Castration-Resistant , Protein Kinase Inhibitors , Xenograft Model Antitumor Assays , Male , Humans , Animals , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/enzymology , Mice , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Tumor Microenvironment/drug effects
15.
Mol Cancer ; 12: 55, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23764122

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the most common primary bone malignancy with a high propensity for local invasion and distant metastasis. Limited by the severe toxicity of conventional agents, the therapeutic bottleneck of osteosarcoma still remains unconquered. Flavokawain B (FKB), a kava extract, has been reported to have significant anti-tumor effects on several carcinoma cell lines both in vitro and in vivo. Its efficacy and low toxicity profile make FKB a promising agent for use as a novel chemotherapeutic agent. RESULTS: In the current study, we investigated the anti-proliferative and apoptotic effects of FKB against human osteosarcomas. Exposure of OS cells to FKB resulted in apoptosis, evidenced by loss of cell viability, morphological changes and the externalization of phosphatidylserine. Apoptosis induced by FKB resulted in activation of Caspase-3/7, -8 and -9 in OS cell lines, 143B and Saos-2. FKB also down-regulated inhibitory apoptotic markers, including Bcl-2 and Survivin and led to concomitant increases in apoptotic proteins, Bax, Puma and Fas. Therefore, the induction of apoptosis by FKB involved both extrinsic and intrinsic pathways. FKB also caused G2/M phase cell cycle arrest, which was observed through reductions in the levels of cyclin B1, cdc2 and cdc25c and increases in Myt1 levels. Furthermore, migration and invasion ability was decreased by FKB in a dose-dependent manner. The cytotoxicity profile showed FKB had significant lower side effects on bone marrow cells and small intestinal epithelial cells compared with Adriamycin. CONCLUSIONS: Taken together, our evidence of apoptosis and cell cycle arrest by FKB treatment with less toxicity than the standard treatments provides an innovative argument for the use of FKB as a chemotherapeutic and chemopreventive compound. In vivo experiments utilizing FKB to reduce tumorigenesis and metastatic potential will be crucial to further justify clinical application.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Bone Neoplasms/metabolism , Flavonoids/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Osteosarcoma/metabolism , Antineoplastic Agents, Phytogenic/toxicity , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bone Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/drug effects , Chalcone/pharmacology , Flavonoids/toxicity , Gene Expression , Humans , Kava/chemistry , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Osteosarcoma/genetics
16.
Nutr Cancer ; 65 Suppl 1: 68-77, 2013.
Article in English | MEDLINE | ID: mdl-23682785

ABSTRACT

Garcinia mangostana, often referred to as mangosteen, is a fruit grown in Southeast Asia and has been used for centuries as a local beverage and natural medicine. Its bioactive compounds, xanthones (i.e., gartanin, α-mangostin, etc), have reported effects on ailments ranging from skin infections and inflammation to urinary tract infections. We demonstrate that mangosteen xanthones (i.e., gartanin and α-mangostin) at pharmacologically achievable concentrations inhibit the growth of cancer cell lines from different stages of human urinary bladder cancer. The growth inhibitory effects of gartanin in mouse embryonic fibroblasts are at least in part dependent on the existence of p53 or TSC1. Indeed, further studies have shown that gartanin treatment of bladder cancer cell lines T24 and RT4 resulted in a marked suppression of p70S6 and 4E-BP1 expression and induction of autophagy, suggesting the inhibition of the mTOR pathway. In addition, gartanin downregulated the expression of Bcl-2 and activated the p53 pathway leading to apoptosis induction. Together, these results suggested that gartanin is a multiple targeting agent that is suitable for further study into its chemopreventive properties for human urinary bladder cancer.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Beverages/analysis , Garcinia mangostana/chemistry , TOR Serine-Threonine Kinases/metabolism , Xanthones/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Down-Regulation , Fruit/chemistry , Humans , Mice , Microscopy, Fluorescence , Phosphoproteins/genetics , Phosphoproteins/metabolism , Proto-Oncogene Proteins/genetics , TOR Serine-Threonine Kinases/genetics , Tuberous Sclerosis Complex 1 Protein , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Up-Regulation , Urinary Bladder Neoplasms/pathology
17.
Curr Pharmacol Rep ; 9(5): 261-274, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37994344

ABSTRACT

Purpose of Review: Castration-resistant prostate cancer (CRPC) is a lethal form of prostate cancer (PCa) due to the development of resistance to androgen deprivation therapy and anti-androgens. Here, we review the emerging role of Wnt signaling in therapeutic resistance of CRPC. Recent Findings: Convincing evidence have accumulated that Wnt signaling is aberrantly activated through genomic alterations and autocrine and paracrine augmentations. Wnt signaling plays a critical role in a subset of CRPC and in resistance to anti-androgen therapies. Wnt signaling navigates CRPC through PCa heterogeneity, neuroendocrine differentiation, DNA repair, PCa stem cell maintenance, epithelial-mesenchymal-transition and metastasis, and immune evasion. Summary: Components of Wnt signaling can be harnessed for inhibiting PCa growth and metastasis and for developing novel therapeutic strategies to manage metastatic CRPC. There are many Wnt pathway-based potential drugs in different stages of pre-clinical development and clinical trials but so far, no Wnt signaling-specific drug has been approved by FDA for clinical use in CRPC.

18.
Front Oncol ; 13: 1116305, 2023.
Article in English | MEDLINE | ID: mdl-36895470

ABSTRACT

Cuproptosis, a newly discovered form of programmed cell death, plays a vital role in the occurrence and development of tumors. However, the role of cuproptosis in the bladder cancer tumor microenvironment remains unclear. In this study, we developed a method for predicting the prognostic outcomes and guiding the treatment selection for patients with bladder cancer. We obtained 1001 samples and survival data points from The Cancer Genome Atlas database and Gene Expression Omnibus database. Using cuproptosis-related genes (CRGs) identified in previous studies, we analyzed CRG transcriptional changes and identified two molecular subtypes, namely high- and low-risk patients. The prognostic features of eight genes (PDGFRB, COMP, GREM1, FRRS1, SDHD, RARRES2, CRTAC1, and HMGCS2) were determined. The CRG molecular typing and risk scores were correlated with clinicopathological features, prognosis, tumor microenvironment cell infiltration characteristics, immune checkpoint activation, mutation burden, and chemotherapy drug sensitivity. Additionally, we constructed an accurate nomogram to improve the clinical applicability of the CRG_score. qRT-PCR was used to detect the expression levels of eight genes in bladder cancer tissues, and the results were consistent with the predicted results. These findings may help us to understand the role of cuproptosis in cancer and provide new directions for the design of personalized treatment and prediction of survival outcomes in patients with bladder cancer.

19.
Cell Death Dis ; 14(11): 716, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923740

ABSTRACT

Lysine-specific demethylase 1 (LSD1) has been identified as an important epigenetic target, and recent advances in lung cancer therapy have highlighted the importance of targeting ferroptosis. However, the precise mechanisms by which LSD1 regulates ferroptosis remain elusive. In this study, we report that the inhibition of LSD1 induces ferroptosis by enhancing lipid peroxidation and reactive oxygen species (ROS) accumulation. Mechanistically, LSD1 inhibition downregulates the expression of activating transcription factor 4 (ATF4) through epigenetic modification of histone H3 lysine 9 dimethyl (H3K9me2), which sequentially inhibits the expression of the cystine-glutamate antiporter (xCT) and decreases glutathione (GSH) production. Furthermore, LSD1 inhibition transcriptionally upregulates the expression of transferrin receptor (TFRC) and acyl-CoA synthetase long chain family member 4 (ACSL4) by enhancing the binding of histone H3 lysine 4 dimethyl (H3K4me2) to their promoter sequences. Importantly, the combination of an LSD1 inhibitor and a ferroptosis inducer demonstrates an enhanced anti-tumor effect in a xenograft model of non-small cell lung cancer (NSCLC), surpassing the efficacy of either agent alone. These findings reveal new insights into the mechanisms by which LSD1 inhibition induces ferroptosis, offering potential guidance for the development of new strategies in the treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Humans , Histones/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Lysine , Cell Line, Tumor , Lung Neoplasms/drug therapy , Histone Demethylases/metabolism
20.
Biomolecules ; 13(3)2023 03 13.
Article in English | MEDLINE | ID: mdl-36979456

ABSTRACT

Epidemiological evidence suggests that kava (Piper methysticum Forst) drinks may reduce the risk of cancer in South Pacific Island smokers. However, little is known about the anti-carcinogenic effects of kava on tobacco smoking-related bladder cancer and its underlying mechanisms. Here we show that dietary feeding of kawain (a major active component in kava root extracts) to mice either before or after hydroxy butyl(butyl) nitrosamine (OH-BBN) carcinogen exposure slows down urinary bladder carcinogenesis and prolongs the survival of the OH-BBN-exposed mice. OH-BBN-induced bladder tumors exhibit significantly increased expression of lysine-specific demethylase 1 (LSD1), accompanied by decreased levels of H3K4 mono-methylation compared to normal bladder epithelium, whereas dietary kawain reverses the effects of OH-BBN on H3K4 mono-methylation. Human bladder cancer tumor tissues at different pathological grades also show significantly increased expression of LSD1 and decreased levels of H3K4 mono-methylation compared to normal urothelium. In addition, kava root extracts and the kavalactones kawain and methysticin all increase the levels of H3K4 mono- and di-methylation, leading to inhibitory effects on cell migration. Taken together, our results suggest that modification of histone lysine methylation may represent a new approach to bladder cancer prevention and treatment and that kavalactones may be promising agents for bladder cancer interception in both current and former smokers.


Subject(s)
Urinary Bladder Neoplasms , Urinary Bladder , Mice , Humans , Animals , Up-Regulation , Lysine , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/prevention & control , Carcinogenesis , Epigenesis, Genetic , Histone Demethylases
SELECTION OF CITATIONS
SEARCH DETAIL