Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters

Publication year range
1.
Nature ; 594(7862): 246-252, 2021 06.
Article in English | MEDLINE | ID: mdl-33845483

ABSTRACT

The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , Proteome/metabolism , Proteomics , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Animals , Antiviral Agents/pharmacology , Autophagy/drug effects , COVID-19/immunology , COVID-19/virology , Cell Line , Datasets as Topic , Drug Evaluation, Preclinical , Host-Pathogen Interactions/immunology , Humans , Matrix Metalloproteinase Inhibitors/pharmacology , Phosphorylation , Protein Interaction Maps , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Proteome/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Transforming Growth Factor beta/metabolism , Ubiquitination , Viral Proteins/chemistry , Viral Proteins/metabolism , Viroporin Proteins/metabolism
2.
J Virol ; 97(6): e0046523, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37199624

ABSTRACT

Coronavirus genome replication and expression are mediated by the viral replication-transcription complex (RTC) which is assembled from multiple nonstructural proteins (nsp). Among these, nsp12 represents the central functional subunit. It harbors the RNA-directed RNA polymerase (RdRp) domain and contains, at its N terminus, an additional domain called NiRAN which is widely conserved in coronaviruses and other nidoviruses. In this study, we produced bacterially expressed coronavirus nsp12s to investigate and compare NiRAN-mediated NMPylation activities from representative alpha- and betacoronaviruses. We found that the four coronavirus NiRAN domains characterized to date have a number of conserved properties, including (i) robust nsp9-specific NMPylation activities that appear to operate largely independently of the C-terminal RdRp domain, (ii) nucleotide substrate preference for UTP followed by ATP and other nucleotides, (iii) dependence on divalent metal ions, with Mn2+ being preferred over Mg2+, and (iv) a key role of N-terminal residues (particularly Asn2) of nsp9 for efficient formation of a covalent phosphoramidate bond between NMP and the N-terminal amino group of nsp9. In this context, a mutational analysis confirmed the conservation and critical role of Asn2 across different subfamilies of the family Coronaviridae, as shown by studies using chimeric coronavirus nsp9 variants in which six N-terminal residues were replaced with those from other corona-, pito- and letovirus nsp9 homologs. The combined data of this and previous studies reveal a remarkable degree of conservation among coronavirus NiRAN-mediated NMPylation activities, supporting a key role of this enzymatic activity in viral RNA synthesis and processing. IMPORTANCE There is strong evidence that coronaviruses and other large nidoviruses evolved a number of unique enzymatic activities, including an additional RdRp-associated NiRAN domain, that are conserved in nidoviruses but not in most other RNA viruses. Previous studies of the NiRAN domain mainly focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggested different functions for this domain, such as NMPylation/RNAylation of nsp9, RNA guanylyltransferase activities involved in canonical and/or unconventional RNA capping pathways, and other functions. To help resolve partly conflicting information on substrate specificities and metal ion requirements reported previously for the SARS-CoV-2 NiRAN NMPylation activity, we extended these earlier studies by characterizing representative alpha- and betacoronavirus NiRAN domains. The study revealed that key features of NiRAN-mediated NMPylation activities, such as protein and nucleotide specificity and metal ion requirements, are very well conserved among genetically divergent coronaviruses, suggesting potential avenues for future antiviral drug development targeting this essential viral enzyme.


Subject(s)
Coronaviridae , Protein Domains , RNA-Dependent RNA Polymerase , Humans , Nucleotides/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/metabolism , Coronaviridae/enzymology , Coronaviridae/genetics , Protein Domains/physiology , Viral Proteins/metabolism , Conserved Sequence , Protein Structure, Secondary/genetics , Vero Cells
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33472860

ABSTRACT

RNA-dependent RNA polymerases (RdRps) of the Nidovirales (Coronaviridae, Arteriviridae, and 12 other families) are linked to an amino-terminal (N-terminal) domain, called NiRAN, in a nonstructural protein (nsp) that is released from polyprotein 1ab by the viral main protease (Mpro). Previously, self-GMPylation/UMPylation activities were reported for an arterivirus NiRAN-RdRp nsp and suggested to generate a transient state primed for transferring nucleoside monophosphate (NMP) to (currently unknown) viral and/or cellular biopolymers. Here, we show that the coronavirus (human coronavirus [HCoV]-229E and severe acute respiratory syndrome coronavirus 2) nsp12 (NiRAN-RdRp) has Mn2+-dependent NMPylation activity that catalyzes the transfer of a single NMP to the cognate nsp9 by forming a phosphoramidate bond with the primary amine at the nsp9 N terminus (N3825) following Mpro-mediated proteolytic release of nsp9 from N-terminally flanking nsps. Uridine triphosphate was the preferred nucleotide in this reaction, but also adenosine triphosphate, guanosine triphosphate, and cytidine triphosphate were suitable cosubstrates. Mutational studies using recombinant coronavirus nsp9 and nsp12 proteins and genetically engineered HCoV-229E mutants identified residues essential for NiRAN-mediated nsp9 NMPylation and virus replication in cell culture. The data corroborate predictions on NiRAN active-site residues and establish an essential role for the nsp9 N3826 residue in both nsp9 NMPylation in vitro and virus replication. This residue is part of a conserved N-terminal NNE tripeptide sequence and shown to be the only invariant residue in nsp9 and its homologs in viruses of the family Coronaviridae The study provides a solid basis for functional studies of other nidovirus NMPylation activities and suggests a possible target for antiviral drug development.


Subject(s)
Coronavirus 229E, Human/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication , Amino Acid Sequence , Amino Acid Substitution , Asparagine/genetics , Cell Line , Conserved Sequence , Coronavirus 229E, Human/physiology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Humans , Manganese/metabolism , Protein Domains , RNA-Binding Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription, Genetic , Viral Nonstructural Proteins/genetics
4.
Nat Immunol ; 12(2): 137-43, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21217758

ABSTRACT

The 5' cap structures of higher eukaryote mRNAs have ribose 2'-O-methylation. Likewise, many viruses that replicate in the cytoplasm of eukaryotes have evolved 2'-O-methyltransferases to autonomously modify their mRNAs. However, a defined biological role for 2'-O-methylation of mRNA remains elusive. Here we show that 2'-O-methylation of viral mRNA was critically involved in subverting the induction of type I interferon. We demonstrate that human and mouse coronavirus mutants lacking 2'-O-methyltransferase activity induced higher expression of type I interferon and were highly sensitive to type I interferon. Notably, the induction of type I interferon by viruses deficient in 2'-O-methyltransferase was dependent on the cytoplasmic RNA sensor Mda5. This link between Mda5-mediated sensing of viral RNA and 2'-O-methylation of mRNA suggests that RNA modifications such as 2'-O-methylation provide a molecular signature for the discrimination of self and non-self mRNA.


Subject(s)
Coronavirus Infections/metabolism , Coronavirus/physiology , DEAD-box RNA Helicases/metabolism , Methyltransferases/metabolism , Viral Proteins/metabolism , Animals , Cell Line , Coronavirus/pathogenicity , Coronavirus Infections/genetics , Coronavirus Infections/immunology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/immunology , Humans , Immunity, Innate/genetics , Interferon Type I/genetics , Interferon Type I/immunology , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1 , Methylation , Methyltransferases/genetics , Methyltransferases/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Viral/metabolism , Receptor, Interferon alpha-beta/genetics , Receptors, Pattern Recognition/genetics , Ribose/metabolism , Viral Proteins/genetics , Viral Proteins/immunology , Virulence/genetics , Virus Replication/genetics
5.
Nucleic Acids Res ; 49(21): 12502-12516, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34850109

ABSTRACT

Circular RNAs (circRNAs) are noncoding RNAs that exist in all eukaryotes investigated and are derived from back-splicing of certain pre-mRNA exons. Here, we report the application of artificial circRNAs designed to act as antisense-RNAs. We systematically tested a series of antisense-circRNAs targeted to the SARS-CoV-2 genome RNA, in particular its structurally conserved 5'-untranslated region. Functional assays with both reporter transfections as well as with SARS-CoV-2 infections revealed that specific segments of the SARS-CoV-2 5'-untranslated region can be efficiently accessed by specific antisense-circRNAs, resulting in up to 90% reduction of virus proliferation in cell culture, and with a durability of at least 48 h. Presenting the antisense sequence within a circRNA clearly proved more efficient than in the corresponding linear configuration and is superior to modified antisense oligonucleotides. The activity of the antisense-circRNA is surprisingly robust towards point mutations in the target sequence. This strategy opens up novel applications for designer circRNAs and promising therapeutic strategies in molecular medicine.


Subject(s)
Genome, Viral/genetics , RNA, Antisense/genetics , RNA, Circular/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , 5' Untranslated Regions/genetics , Animals , Antiviral Agents/metabolism , Base Sequence , COVID-19/prevention & control , COVID-19/virology , Cell Proliferation/genetics , Chlorocebus aethiops , Drug Design , HeLa Cells , Host-Pathogen Interactions/genetics , Humans , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA-Seq/methods , SARS-CoV-2/physiology , Vero Cells
6.
Nucleic Acids Res ; 49(5): 2894-2915, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33619526

ABSTRACT

Trans-acting regulatory RNAs have the capacity to base pair with more mRNAs than generally detected under defined conditions, raising the possibility that sRNA target specificities vary depending on the specific metabolic or environmental conditions. In Sinorhizobium meliloti, the sRNA rnTrpL is derived from a tryptophan (Trp) transcription attenuator located upstream of the Trp biosynthesis gene trpE(G). The sRNA rnTrpL contains a small ORF, trpL, encoding the 14-aa leader peptide peTrpL. If Trp is available, efficient trpL translation causes transcription termination and liberation of rnTrpL, which subsequently acts to downregulate the trpDC operon, while peTrpL is known to have a Trp-independent role in posttranscriptional regulation of antibiotic resistance mechanisms. Here, we show that tetracycline (Tc) causes rnTrpL accumulation independently of Trp availability. In the presence of Tc, rnTrpL and peTrpL act collectively to destabilize rplUrpmA mRNA encoding ribosomal proteins L21 and L27. The three molecules, rnTrpL, peTrpL, and rplUrpmA mRNA, form an antibiotic-dependent ribonucleoprotein complex (ARNP). In vitro reconstitution of this ARNP in the presence of competing trpD and rplU transcripts revealed that peTrpL and Tc cause a shift of rnTrpL specificity towards rplU, suggesting that sRNA target prioritization may be readjusted in response to changing environmental conditions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Peptides/metabolism , RNA Stability , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism , Sinorhizobium meliloti/genetics , Tetracycline/pharmacology , Base Pairing , Gene Expression Regulation, Bacterial , Peptides/chemistry , RNA, Antisense/metabolism , RNA, Messenger/chemistry , RNA, Small Untranslated/chemistry , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Sinorhizobium meliloti/drug effects
7.
Genome Res ; 29(9): 1545-1554, 2019 09.
Article in English | MEDLINE | ID: mdl-31439691

ABSTRACT

Sequence analyses of RNA virus genomes remain challenging owing to the exceptional genetic plasticity of these viruses. Because of high mutation and recombination rates, genome replication by viral RNA-dependent RNA polymerases leads to populations of closely related viruses, so-called "quasispecies." Standard (short-read) sequencing technologies are ill-suited to reconstruct large numbers of full-length haplotypes of (1) RNA virus genomes and (2) subgenome-length (sg) RNAs composed of noncontiguous genome regions. Here, we used a full-length, direct RNA sequencing (DRS) approach based on nanopores to characterize viral RNAs produced in cells infected with a human coronavirus. By using DRS, we were able to map the longest (∼26-kb) contiguous read to the viral reference genome. By combining Illumina and Oxford Nanopore sequencing, we reconstructed a highly accurate consensus sequence of the human coronavirus (HCoV)-229E genome (27.3 kb). Furthermore, by using long reads that did not require an assembly step, we were able to identify, in infected cells, diverse and novel HCoV-229E sg RNAs that remain to be characterized. Also, the DRS approach, which circumvents reverse transcription and amplification of RNA, allowed us to detect methylation sites in viral RNAs. Our work paves the way for haplotype-based analyses of viral quasispecies by showing the feasibility of intra-sample haplotype separation. Even though several technical challenges remain to be addressed to exploit the potential of the nanopore technology fully, our work illustrates that DRS may significantly advance genomic studies of complex virus populations, including predictions on long-range interactions in individual full-length viral RNA haplotypes.


Subject(s)
Coronavirus/genetics , Nanopore Sequencing/methods , Sequence Analysis, RNA/methods , Cell Line , Evolution, Molecular , Genetic Variation , Genome Size , Humans , Methylation , Quasispecies
8.
Article in German | MEDLINE | ID: mdl-35015105

ABSTRACT

The National Reference Center (NRC) for hepatitis B viruses (HBV) and hepatitis D viruses (HDV) has been located at the Institute of Medical Virology of the Justus Liebig University (JLU) in Giessen, Germany, since its establishment in 2011. This paper describes the NRC's areas of activity and related experience.The NRC offers comprehensive consulting services on all diagnostic and clinical aspects of acute and chronic HBV and HDV infections for the Public Health Service (ÖGD), diagnostic laboratories, clinics, research institutes, and physicians in private practice. Uncertain diagnostic findings can be analyzed and interpreted and epidemiological correlations clarified with the HBV/HDV special diagnostics established at the NRC using state-of-the-art molecular, biochemical, and genetic laboratory tools. The NRC has access to a strain collection of many well-characterized and cloned HBV/HDV isolates, allowing comparative analysis and evaluation of antiviral resistance mutations and immune escape variants. Together with its national and international partner institutions, the NRC initiates and supervises, among other things, interlaboratory studies for the diagnosis of HBV resistance and immune escape for the establishment and validation of international World Health Organization (WHO) standards and for the improvement of quantitative HDV genome determination. The NRC actively participates in current recommendations and guidelines on HBV and HDV and the recommendations of medical societies. It also highlights current HBV/HDV-relevant aspects with contributions in the form of national and international lectures as well as original articles and comments in national and international journals.


Subject(s)
Hepatitis B , Hepatitis D , Germany , Hepatitis B/diagnosis , Hepatitis B/epidemiology , Hepatitis B virus , Hepatitis D/diagnosis , Hepatitis D/epidemiology , Hepatitis Delta Virus/genetics , Humans
9.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L590-L599, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33237794

ABSTRACT

Despite the pandemic status of COVID-19, there is limited information about host risk factors and treatment beyond supportive care. Immunoglobulin G (IgG) could be a potential treatment target. Our aim was to determine the incidence of IgG deficiency and associated risk factors in a cohort of 62 critically ill patients with COVID-19 admitted to two German ICUs (72.6% male, median age: 61 yr). Thirteen (21.0%) of the patients displayed IgG deficiency (IgG < 7 g/L) at baseline (predominant for the IgG1, IgG2, and IgG4 subclasses). Patients who were IgG-deficient had worse measures of clinical disease severity than those with normal IgG levels (shorter duration from disease onset to ICU admission, lower ratio of [Formula: see text] to [Formula: see text], higher Sequential Organ Failure Assessment score, and higher levels of ferritin, neutrophil-to-lymphocyte ratio, and serum creatinine). Patients who were IgG-deficient were also more likely to have sustained lower levels of lymphocyte counts and higher levels of ferritin throughout the hospital stay. Furthermore, patients who were IgG-deficient compared with those with normal IgG levels displayed higher rates of acute kidney injury (76.9% vs. 26.5%; P = 0.001) and death (46.2% vs. 14.3%; P = 0.012), longer ICU [28 (6-48) vs. 12 (3-18) days; P = 0.012] and hospital length of stay [30 (22-50) vs. 18 (9-24) days; P = 0.004]. Univariable logistic regression showed increasing odds of 90-day overall mortality associated with IgG-deficiency (odds ratio 5.14, 95% confidence interval 1.3-19.9; P = 0.018). IgG deficiency might be common in patients with COVID-19 who are critically ill, and warrants investigation as both a marker of disease severity as well as a potential therapeutic target.


Subject(s)
COVID-19/virology , Immunoglobulins/deficiency , SARS-CoV-2/pathogenicity , Severity of Illness Index , Cohort Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Risk Factors
10.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: mdl-33108263

ABSTRACT

The family Roniviridae includes the genus Okavirus for three species of viruses with enveloped, rod-shaped virions. The monopartite, positive-sense ssRNA genome (26-27 kb) contains five canonical long open reading frames (ORFs). ORF1a encodes polyprotein pp1a containing proteinase domains. ORF1b is expressed as a large polyprotein pp1ab by ribosomal frameshifting from ORF1a and encodes replication enzymes. ORF2 encodes the nucleoprotein. ORF3 encodes two envelope glycoproteins. ORFX encodes a putative double membrane-spanning protein. Roniviruses infect shrimp but only yellow head virus is highly pathogenic. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Roniviridae, which is available at ictv.global/report/roniviridae.


Subject(s)
Roniviridae/classification , Animals , Genome, Viral , Open Reading Frames , Penaeidae/virology , RNA, Viral , Roniviridae/genetics , Roniviridae/physiology , Roniviridae/ultrastructure , Virion/ultrastructure , Virus Replication
11.
Nucleic Acids Res ; 47(12): 6396-6410, 2019 07 09.
Article in English | MEDLINE | ID: mdl-30993322

ABSTRACT

Ribosome-mediated transcription attenuation is a basic posttranscriptional regulation mechanism in bacteria. Liberated attenuator RNAs arising in this process are generally considered nonfunctional. In Sinorhizobium meliloti, the tryptophan (Trp) biosynthesis genes are organized into three operons, trpE(G), ppiD-trpDC-moaC-moeA, and trpFBA-accD-folC, of which only the first one, trpE(G), contains a short ORF (trpL) in the 5'-UTR and is regulated by transcription attenuation. Under conditions of Trp sufficiency, transcription is terminated between trpL and trpE(G), and a small attenuator RNA, rnTrpL, is produced. Here, we show that rnTrpL base-pairs with trpD and destabilizes the polycistronic trpDC mRNA, indicating rnTrpL-mediated downregulation of the trpDC operon in trans. Although all three trp operons are regulated in response to Trp availability, only in the two operons trpE(G) and trpDC the Trp-mediated regulation is controlled by rnTrpL. Together, our data show that the trp attenuator coordinates trpE(G) and trpDC expression posttranscriptionally by two fundamentally different mechanisms: ribosome-mediated transcription attenuation in cis and base-pairing in trans. Also, we present evidence that rnTrpL-mediated regulation of trpDC genes expression in trans is conserved in Agrobacterium and Bradyrhizobium, suggesting that the small attenuator RNAs may have additional conserved functions in the control of bacterial gene expression.


Subject(s)
Gene Expression Regulation, Bacterial , RNA, Small Untranslated/metabolism , Sinorhizobium meliloti/genetics , Tryptophan/biosynthesis , Base Pairing , Operon , RNA Stability , RNA, Messenger/metabolism , RNA, Small Untranslated/chemistry , Sinorhizobium meliloti/metabolism , Transcription, Genetic
12.
J Virol ; 93(12)2019 06 15.
Article in English | MEDLINE | ID: mdl-30918070

ABSTRACT

Coronavirus nonstructural protein 8 (nsp8) has been suggested to have diverse activities, including noncanonical template-dependent polymerase activities. Here, we characterized a recombinant form of the human coronavirus 229E (HCoV-229E) nsp8 and found that the protein has metal ion-dependent RNA 3'-terminal adenylyltransferase (TATase) activity, while other nucleotides were not (or very inefficiently) transferred to the 3' ends of single-stranded and (fully) double-stranded acceptor RNAs. Using partially double-stranded RNAs, very efficient TATase activity was observed if the opposite (template) strand contained a short 5' oligo(U) sequence, while very little (if any) activity was detected for substrates with other homopolymeric or heteropolymeric sequences in the 5' overhang. The oligo(U)-assisted/templated TATase activity on partial-duplex RNAs was confirmed for two other coronavirus nsp8 proteins, suggesting that the activity is conserved among coronaviruses. Replacement of a conserved Lys residue with Ala abolished the in vitro RNA-binding and TATase activities of nsp8 and caused a nonviable phenotype when the corresponding mutation was introduced into the HCoV-229E genome, confirming that these activities are mediated by nsp8 and critical for viral replication. In additional experiments, we obtained evidence that nsp8 has a pronounced specificity for adenylate and is unable to incorporate guanylate into RNA products, which strongly argues against the previously proposed template-dependent RNA polymerase activity of this protein. Given the presence of an oligo(U) stretch at the 5' end of coronavirus minus-strand RNAs, it is tempting to speculate (but remains to be confirmed) that the nsp8-mediated TATase activity is involved in the 3' polyadenylation of viral plus-strand RNAs.IMPORTANCE Previously, coronavirus nsp8 proteins were suggested to have template-dependent RNA polymerase activities resembling those of RNA primases or even canonical RNA-dependent RNA polymerases, while more recent studies have suggested an essential cofactor function of nsp8 (plus nsp7) for nsp12-mediated RNA-dependent RNA polymerase activity. In an effort to reconcile conflicting data from earlier studies, the study revisits coronavirus nsp8-associated activities using additional controls and proteins. The data obtained for three coronavirus nsp8 proteins provide evidence that the proteins share metal ion-dependent RNA 3' polyadenylation activities that are greatly stimulated by a short oligo(U) stretch in the template strand. In contrast, nsp8 was found to be unable to select and incorporate appropriate (matching) nucleotides to produce cRNA products from heteropolymeric and other homooligomeric templates. While confirming the critical role of nsp8 in coronavirus replication, the study amends the list of activities mediated by coronavirus nsp8 proteins in the absence of other proteins.


Subject(s)
Coronavirus 229E, Human/metabolism , Polynucleotide Adenylyltransferase/metabolism , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Coronavirus/genetics , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/physiology , Coronavirus Infections , Coronavirus RNA-Dependent RNA Polymerase , Nucleotides/metabolism , Polynucleotide Adenylyltransferase/physiology , Protein Multimerization , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Viral Nonstructural Proteins/isolation & purification , Virus Replication/genetics , Virus Replication/physiology
13.
J Virol ; 92(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29167338

ABSTRACT

Coronavirus replication is associated with intracellular membrane rearrangements in infected cells, resulting in the formation of double-membrane vesicles (DMVs) and other membranous structures that are referred to as replicative organelles (ROs). The latter provide a structural scaffold for viral replication/transcription complexes (RTCs) and help to sequester RTC components from recognition by cellular factors involved in antiviral host responses. There is increasing evidence that plus-strand RNA (+RNA) virus replication, including RO formation and virion morphogenesis, affects cellular lipid metabolism and critically depends on enzymes involved in lipid synthesis and processing. Here, we investigated the role of cytosolic phospholipase A2α (cPLA2α) in coronavirus replication using a low-molecular-weight nonpeptidic inhibitor, pyrrolidine-2 (Py-2). The inhibition of cPLA2α activity, which produces lysophospholipids (LPLs) by cleaving at the sn-2 position of phospholipids, had profound effects on viral RNA and protein accumulation in human coronavirus 229E-infected Huh-7 cells. Transmission electron microscopy revealed that DMV formation in infected cells was significantly reduced in the presence of the inhibitor. Furthermore, we found that (i) viral RTCs colocalized with LPL-containing membranes, (ii) cellular LPL concentrations were increased in coronavirus-infected cells, and (iii) this increase was diminished in the presence of the cPLA2α inhibitor Py-2. Py-2 also displayed antiviral activities against other viruses representing the Coronaviridae and Togaviridae families, while members of the Picornaviridae were not affected. Taken together, the study provides evidence that cPLA2α activity is critically involved in the replication of various +RNA virus families and may thus represent a candidate target for broad-spectrum antiviral drug development.IMPORTANCE Examples of highly conserved RNA virus proteins that qualify as drug targets for broad-spectrum antivirals remain scarce, resulting in increased efforts to identify and specifically inhibit cellular functions that are essential for the replication of RNA viruses belonging to different genera and families. The present study supports and extends previous conclusions that enzymes involved in cellular lipid metabolism may be tractable targets for broad-spectrum antivirals. We obtained evidence to show that a cellular phospholipase, cPLA2α, which releases fatty acid from the sn-2 position of membrane-associated glycerophospholipids, is critically involved in coronavirus replication, most likely by producing lysophospholipids that are required to form the specialized membrane compartments in which viral RNA synthesis takes place. The importance of this enzyme in coronavirus replication and DMV formation is supported by several lines of evidence, including confocal and electron microscopy, viral replication, and lipidomics studies of coronavirus-infected cells treated with a highly specific cPLA2α inhibitor.


Subject(s)
Coronavirus/physiology , Group IV Phospholipases A2/antagonists & inhibitors , Virus Replication , Animals , Cell Division/drug effects , Cell Line , Chlorocebus aethiops , Coronavirus/genetics , Coronavirus Infections/virology , Cricetinae , Dogs , Group IV Phospholipases A2/metabolism , Humans , Intracellular Membranes/metabolism , Madin Darby Canine Kidney Cells , Pyrrolidines/pharmacology , RNA, Viral/drug effects , Vero Cells
14.
PLoS Pathog ; 13(3): e1006286, 2017 03.
Article in English | MEDLINE | ID: mdl-28355270

ABSTRACT

Coronavirus replication takes place in the host cell cytoplasm and triggers inflammatory gene expression by poorly characterized mechanisms. To obtain more insight into the signals and molecular events that coordinate global host responses in the nucleus of coronavirus-infected cells, first, transcriptome dynamics was studied in human coronavirus 229E (HCoV-229E)-infected A549 and HuH7 cells, respectively, revealing a core signature of upregulated genes in these cells. Compared to treatment with the prototypical inflammatory cytokine interleukin(IL)-1, HCoV-229E replication was found to attenuate the inducible activity of the transcription factor (TF) NF-κB and to restrict the nuclear concentration of NF-κB subunits by (i) an unusual mechanism involving partial degradation of IKKß, NEMO and IκBα and (ii) upregulation of TNFAIP3 (A20), although constitutive IKK activity and basal TNFAIP3 expression levels were shown to be required for efficient virus replication. Second, we characterized actively transcribed genomic regions and enhancers in HCoV-229E-infected cells and systematically correlated the genome-wide gene expression changes with the recruitment of Ser5-phosphorylated RNA polymerase II and prototypical histone modifications (H3K9ac, H3K36ac, H4K5ac, H3K27ac, H3K4me1). The data revealed that, in HCoV-infected (but not IL-1-treated) cells, an extensive set of genes was activated without inducible p65 NF-κB being recruited. Furthermore, both HCoV-229E replication and IL-1 were shown to upregulate a small set of genes encoding immunomodulatory factors that bind p65 at promoters and require IKKß activity and p65 for expression. Also, HCoV-229E and IL-1 activated a common set of 440 p65-bound enhancers that differed from another 992 HCoV-229E-specific enhancer regions by distinct TF-binding motif combinations. Taken together, the study shows that cytoplasmic RNA viruses fine-tune NF-κB signaling at multiple levels and profoundly reprogram the host cellular chromatin landscape, thereby orchestrating the timely coordinated expression of genes involved in multiple signaling, immunoregulatory and metabolic processes.


Subject(s)
Chromatin/physiology , Coronavirus 229E, Human , Coronavirus Infections/genetics , NF-kappa B/metabolism , Transcriptome , Cell Line , Chromatin Immunoprecipitation , Gene Expression Regulation , Humans , Immunoblotting , Laser Capture Microdissection , Microscopy, Fluorescence , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction
15.
PLoS Pathog ; 13(2): e1006195, 2017 02.
Article in English | MEDLINE | ID: mdl-28158275

ABSTRACT

Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.


Subject(s)
Coronaviridae/enzymology , Coronavirus Infections/immunology , Endonucleases/immunology , Immune Evasion/physiology , Viral Proteins/immunology , Animals , Coronaviridae/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/immunology , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
16.
J Gen Virol ; 99(9): 1253-1260, 2018 09.
Article in English | MEDLINE | ID: mdl-30058998

ABSTRACT

White bream virus (WBV), a poorly characterized plus-strand RNA virus infecting freshwater fish of the Cyprinidae family, is the prototype species of the genus Bafinivirus in the subfamily Torovirinae (family Coronaviridae, order Nidovirales). In common with other nidoviruses featuring >20 kilobase genomes, bafiniviruses have been predicted to encode an exoribonuclease (ExoN) in their replicase gene. Here, we used information on the substrate specificity of bafinivirus 3C-like proteases to express WBV ExoN in an active form in Escherichia coli. The 374-residue protein displayed robust 3'-to-5' exoribonuclease activity in the presence of Mg2+ ions and, unlike its coronavirus homologues, did not require a protein cofactor for activity. Characterization of mutant forms of ExoN provided support for predictions on putative active-site and conserved zinc-binding residues. WBV ExoN was revealed to be most active on double-stranded RNA substrates containing one or two non-paired 3'-terminal nucleotides, supporting its presumed role in increasing the fidelity of the bafinivirus RNA-dependent RNA polymerase.


Subject(s)
Coronaviridae/enzymology , Exoribonucleases/metabolism , Viral Proteins/metabolism , Coronaviridae/metabolism , Exoribonucleases/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Viral , RNA, Double-Stranded , RNA, Viral , Substrate Specificity , Virus Replication
17.
J Gen Virol ; 98(8): 2017-2029, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28758629

ABSTRACT

Feline coronaviruses encode five accessory proteins with largely elusive functions. Here, one of these proteins, called 7b (206 residues), was investigated using a reverse genetic approach established for feline infectious peritonitis virus (FIPV) strain 79-1146. Recombinant FIPVs (rFPIVs) expressing mutant and/or FLAG-tagged forms of 7b were generated and used to investigate the expression, processing, glycosylation, localization and trafficking of the 7b protein in rFIPV-infected cells, focusing on a previously predicted ER retention signal, KTEL, at the C-terminus of 7b. The study revealed that 7b is N-terminally processed by a cellular signalase. The cleavage site, 17-Ala|Thr-18, was unambiguously identified by N-terminal sequence analysis of a 7b processing product purified from rFIPV-infected cells. Based on this information, rFIPVs expressing FLAG-tagged 7b proteins were generated and the effects of substitutions in the C-terminal 202KTEL206 sequence were investigated. The data show that (i) 7b localizes to and is retained in the medial- and/or trans-Golgi compartment, (ii) the C-terminal KTEL sequence acts as a Golgi [rather than an endoplasmic reticulum (ER)] retention signal, (iii) minor changes in the KTEL motif (such as KTE, KTEV, or the addition of a C-terminal tag) abolish Golgi retention, resulting in relocalization and secretion of 7b, and (iv) a KTEL-to-KDEL replacement causes retention of 7b in the ER of rFIPV-infected feline cells. Taken together, this study provides interesting new insights into an efficient Golgi retention signal that controls the cellular localization and trafficking of the FIPV 7b protein in virus-infected feline cells.


Subject(s)
Coronavirus, Feline/metabolism , Feline Infectious Peritonitis/virology , Golgi Apparatus/virology , Viral Regulatory and Accessory Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Cats , Coronavirus, Feline/chemistry , Coronavirus, Feline/genetics , Glycosylation , Golgi Apparatus/ultrastructure , Molecular Sequence Data , Protein Sorting Signals , Protein Transport , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/genetics
18.
J Gen Virol ; 97(6): 1439-1445, 2016 06.
Article in English | MEDLINE | ID: mdl-26977900

ABSTRACT

Mesoniviridae are a family of insect RNA viruses that diverged profoundly from other families of the Nidovirales. Mesonivirus replicative proteins are produced from large polyprotein (pp) precursors (pp1a and pp1ab) through proteolytic cleavage by the viral 3C-like protease (3CLpro) and, possibly, other proteases. Using recombinant forms of the Cavally virus 3CLpro and pp1a/pp1ab-derived substrates, we characterized 3CLpro cleavage sites in mesonivirus polyproteins. Our data lead us to suggest that 3CLpro cleaves the central and C-proximal regions of mesonivirus pp1a/pp1ab at 12 conserved sites. Compared to other nidovirus homologues, the mesonivirus 3CLpro features a distinct substrate specificity, with asparagine at P2 being a major specificity determinant. Furthermore, we provide evidence that expression of the ORF1b-encoded part of pp1ab involves a -1 ribosomal frameshift at a conserved GGAUUUU heptanucleotide sequence in the ORF1a/1b overlap region. Taken together, the study identifies critical steps in the expression and maturation of mesonivirus replicative proteins.


Subject(s)
Cysteine Endopeptidases/metabolism , Nidovirales/enzymology , Nidovirales/physiology , Polyproteins/metabolism , Protein Processing, Post-Translational , Viral Proteins/metabolism , 3C Viral Proteases , Animals , Insecta , Proteolysis , Substrate Specificity
19.
J Gen Virol ; 97(3): 620-631, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26743314

ABSTRACT

Influenza vaccine strains (IVSs) contain the haemagglutinin (HA) and neuraminidase (NA) genome segments of relevant circulating strains in the genetic background of influenza A/PR/8/1934 virus (PR8). Previous work has shown that the nature of the PB1 segment may be a limiting factor for the efficient production of IVSs. Here, we showed that the PB1 segment (PB1Gi) from the 2009 pandemic influenza A virus (IAV) A/Giessen/06/2009 (Gi wt, H1N1pdm) may help to resolve (some of) these limitations. We produced a set of recombinant PR8-derived viruses that contained (i) the HA and NA segments from representative IAV strains (H3N2, H5N1, H7N9, H9N2); (ii) the PB1 segment from PR8 or Gi wt, respectively; and (iii) the remaining five genome segments from PR8. Viruses containing the PB1Gi segment, together with the heterologous HA/NA segments and five PR8 segments (5+2+1), replicated to higher titres compared with their 6+2 counterparts containing six PR8 segments and the equivalent heterologous HA/NA segments. Compared with PB1PR8-containing IVSs, viruses with the PB1Gi segment replicated to higher or similar titres in both cell culture and embryonated eggs, most profoundly IVSs of the H5N1 and H7N9 subtype, which are known to grow poorly in these systems. IVSs containing either the PB1Gi or the cognate PB1 segment of the respective specific HA/NA donor strain showed enhanced or similar virus replication levels. This study suggests that substitution of PB1PR8 with the PB1Gi segment may greatly improve the large-scale production of PR8-derived IVSs, especially of those known to replicate poorly in vitro.


Subject(s)
Influenza A Virus, H1N1 Subtype/enzymology , Influenza Vaccines/administration & dosage , Influenza, Human/virology , Viral Proteins/metabolism , Virus Replication , Animals , Chick Embryo , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/physiology , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/physiology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Ovum/virology , Viral Proteins/genetics
20.
J Gen Virol ; 97(9): 2135-2148, 2016 09.
Article in English | MEDLINE | ID: mdl-27405649

ABSTRACT

Reassortment of their segmented genomes allows influenza A viruses (IAV) to gain new characteristics, which potentially enable them to cross the species barrier and infect new hosts. Improved replication was observed for reassortants of the strictly avian IAV A/FPV/Rostock/34 (FPV, H7N1) containing the NS segment from A/Goose/Guangdong/1/1996 (GD, H5N1), but not for reassortants containing the NS segment of A/Mallard/NL/12/2000 (MA, H7N3). The NS1 of GD and MA differ only in 8 aa positions. Here, we show that efficient replication of FPV-NSMA-derived mutants was linked to the presence of a single substitution (D74N) and more prominently to a triple substitution (P3S+R41K+D74N) in the NS1MA protein. The substitution(s) led to (i) increased virus titres, (ii) larger plaque sizes and (iii) increased levels and faster kinetics of viral mRNA and protein accumulation in mammalian cells. Interestingly, the NS1 substitutions did not affect viral growth characteristics in avian cells. Furthermore, we show that an FPV mutant with N74 in the NS1 (already possessing S3+K41) is able to replicate and cause disease in mice, demonstrating a key role of NS1 in the adaptation of avian IAV to mammalian hosts. Our data suggest that (i) adaptation to mammalian hosts does not necessarily compromise replication in the natural (avian) host and (ii) very few genetic changes may pave the way for zoonotic transmission. The study reinforces the need for close surveillance and characterization of circulating avian IAV to identify genetic signatures that indicate a potential risk for efficient transmission of avian strains to mammalian hosts.


Subject(s)
Influenza A virus/physiology , Mutant Proteins/genetics , Mutation, Missense , Viral Nonstructural Proteins/genetics , Virus Replication , Amino Acid Substitution , Animals , Cell Line , Disease Models, Animal , Humans , Influenza A virus/genetics , Mice, Inbred C57BL , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL