Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Ther ; 24(4): 812-22, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26316390

ABSTRACT

Chronic granulomatous disease (CGD) is an inherited immunodeficiency, caused by the inability of neutrophils to produce functional NADPH oxidase required for fighting microbial infections. The X-linked form of CGD (X-CGD), which is due to mutations in the CYBB (gp91phox) gene, a component of NADPH oxidase, accounts for about two-thirds of CGD cases. We derived induced pluripotent stem cells (iPSCs) from X-CGD patient keratinocytes using a Flp recombinase excisable lentiviral reprogramming vector. For restoring gp91phox function, we applied two strategies: transposon-mediated bacterial artificial chromosome (BAC) transgenesis and gene targeting using vectors with a fixed 5' homology arm (HA) of 8 kb and 3'HA varying in size from 30 to 80 kb. High efficiency of homologous recombination (up to 22%) was observed with increased size of the 3'HA. Both, BAC transgenesis and gene targeting resulted in functional restoration of the gp91phox measured by an oxidase activity assay in X-CGD iPSCs differentiated into the myeloid lineage. In conclusion, we delivered an important milestone towards the use of genetically corrected autologous cells for the treatment of X-CGD and monogenic diseases in general.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Gene Transfer Techniques , Granulomatous Disease, Chronic/pathology , Induced Pluripotent Stem Cells/enzymology , Membrane Glycoproteins/genetics , NADPH Oxidases/genetics , Cell Differentiation , Cells, Cultured , Gene Targeting , Genetic Therapy , Genetic Vectors , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Humans , Keratinocytes/cytology , Membrane Glycoproteins/metabolism , Mutation , NADPH Oxidase 2 , NADPH Oxidases/metabolism
2.
Oncotarget ; 9(43): 27293-27304, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29930766

ABSTRACT

Prostate cancer is the most common malignancy in men and has a high propensity to metastasize to bone. WNT5A has recently been implicated in the progression of prostate cancer, however, the receptors that mediate its effects remain unknown. Here, we identified Wnt receptors that are highly expressed in prostate cancer and investigated which of these receptors mediate the anti-tumor effects of WNT5A in prostate cancer in vitro. Extensive in vitro analyses revealed that the WNT5A receptors FZD5 and RYK mediate the anti-tumor effects of WNT5A on prostate cancer cells. Knock-down of FZD5 completely abrogated the anti-proliferative effect of WNT5A in PC3 cells. In contrast, knock-down of RYK and FZD8 did not rescue the inhibition of proliferation after WNT5A overexpression. In contrast, RYK knock-down inhibited the pro-apoptotic effect of WNT5A in PC3 cells by 60%, whereas the knock-down of either FZD5 or FZD8 further stimulated apoptosis after WNT5A overexpression (by 33% and 234%, respectively). Surface plasmon resonance analysis indicated that WNT5A has a 30% stronger binding response to FZD5 than to RYK. Further investigations using a tissue microarray revealed that expression of RYK is increased in advanced prostate cancer tumor stages, but is not associated with survival of prostate cancer patients. In contrast, patients with low local FZD5 expression, in particular in combination with low WNT5A expression, showed a longer disease-specific survival. In conclusion, WNT5A/FZD5 and WNT5A/RYK signaling are both involved in mediating the pro-apoptotic and anti-proliferative effects of WNT5A in prostate cancer.

SELECTION OF CITATIONS
SEARCH DETAIL