Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(4): 585-602.e29, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35051368

ABSTRACT

The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Magnesium/metabolism , Animals , Bacterial Infections/immunology , Caloric Restriction , Cell Line, Tumor , Cytotoxicity, Immunologic , HEK293 Cells , Humans , Immunologic Memory , Immunological Synapses/metabolism , Immunotherapy , Lymphocyte Activation/immunology , MAP Kinase Signaling System , Magnesium/administration & dosage , Male , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Phenotype , Phosphorylation , Proto-Oncogene Proteins c-jun/metabolism
2.
Nat Immunol ; 21(12): 1540-1551, 2020 12.
Article in English | MEDLINE | ID: mdl-33020660

ABSTRACT

The metabolic challenges present in tumors attenuate the metabolic fitness and antitumor activity of tumor-infiltrating T lymphocytes (TILs). However, it remains unclear whether persistent metabolic insufficiency can imprint permanent T cell dysfunction. We found that TILs accumulated depolarized mitochondria as a result of decreased mitophagy activity and displayed functional, transcriptomic and epigenetic characteristics of terminally exhausted T cells. Mechanistically, reduced mitochondrial fitness in TILs was induced by the coordination of T cell receptor stimulation, microenvironmental stressors and PD-1 signaling. Enforced accumulation of depolarized mitochondria with pharmacological inhibitors induced epigenetic reprogramming toward terminal exhaustion, indicating that mitochondrial deregulation caused T cell exhaustion. Furthermore, supplementation with nicotinamide riboside enhanced T cell mitochondrial fitness and improved responsiveness to anti-PD-1 treatment. Together, our results reveal insights into how mitochondrial dynamics and quality orchestrate T cell antitumor responses and commitment to the exhaustion program.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mitochondrial Dynamics/immunology , Biomarkers , Epigenesis, Genetic , Epigenomics , Humans , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitophagy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Niacinamide/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Stress, Physiological , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
3.
Nat Immunol ; 21(3): 298-308, 2020 03.
Article in English | MEDLINE | ID: mdl-32066953

ABSTRACT

Depleting regulatory T cells (Treg cells) to counteract immunosuppressive features of the tumor microenvironment (TME) is an attractive strategy for cancer treatment; however, autoimmunity due to systemic impairment of their suppressive function limits its therapeutic potential. Elucidating approaches that specifically disrupt intratumoral Treg cells is direly needed for cancer immunotherapy. We found that CD36 was selectively upregulated in intrautumoral Treg cells as a central metabolic modulator. CD36 fine-tuned mitochondrial fitness via peroxisome proliferator-activated receptor-ß signaling, programming Treg cells to adapt to a lactic acid-enriched TME. Genetic ablation of Cd36 in Treg cells suppressed tumor growth accompanied by a decrease in intratumoral Treg cells and enhancement of antitumor activity in tumor-infiltrating lymphocytes without disrupting immune homeostasis. Furthermore, CD36 targeting elicited additive antitumor responses with anti-programmed cell death protein 1 therapy. Our findings uncover the unexplored metabolic adaptation that orchestrates the survival and functions of intratumoral Treg cells, and the therapeutic potential of targeting this pathway for reprogramming the TME.


Subject(s)
CD36 Antigens/immunology , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Apoptosis/immunology , CD36 Antigens/deficiency , CD36 Antigens/genetics , Cell Line, Tumor , Female , Homeostasis/immunology , Humans , Immunotherapy , Lipid Metabolism/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/metabolism , Neoplasms/pathology , PPAR-beta/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Tumor Microenvironment/immunology
4.
Immunity ; 56(6): 1341-1358.e11, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315536

ABSTRACT

Type 1 conventional dendritic cells (cDC1s) are critical for anti-cancer immunity. Protective anti-cancer immunity is thought to require cDC1s to sustain T cell responses within tumors, but it is poorly understood how this function is regulated and whether its subversion contributes to immune evasion. Here, we show that tumor-derived prostaglandin E2 (PGE2) programmed a dysfunctional state in intratumoral cDC1s, disabling their ability to locally orchestrate anti-cancer CD8+ T cell responses. Mechanistically, cAMP signaling downstream of the PGE2-receptors EP2 and EP4 was responsible for the programming of cDC1 dysfunction, which depended on the loss of the transcription factor IRF8. Blockade of the PGE2-EP2/EP4-cDC1 axis prevented cDC1 dysfunction in tumors, locally reinvigorated anti-cancer CD8+ T cell responses, and achieved cancer immune control. In human cDC1s, PGE2-induced dysfunction is conserved and associated with poor cancer patient prognosis. Our findings reveal a cDC1-dependent intratumoral checkpoint for anti-cancer immunity that is targeted by PGE2 for immune evasion.


Subject(s)
Dinoprostone , Neoplasms , Humans , Antibodies , CD8-Positive T-Lymphocytes , Dendritic Cells , Receptors, Prostaglandin E
5.
Nat Immunol ; 20(2): 206-217, 2019 02.
Article in English | MEDLINE | ID: mdl-30664764

ABSTRACT

Immune checkpoint blockade therapy has shifted the paradigm for cancer treatment. However, the majority of patients lack effective responses due to insufficient T cell infiltration in tumors. Here we show that expression of mitochondrial uncoupling protein 2 (UCP2) in tumor cells determines the immunostimulatory feature of the tumor microenvironment (TME) and is positively associated with prolonged survival. UCP2 reprograms the immune state of the TME by altering its cytokine milieu in an interferon regulatory factor 5-dependent manner. Consequently, UCP2 boosts the conventional type 1 dendritic cell- and CD8+ T cell-dependent anti-tumor immune cycle and normalizes the tumor vasculature. Finally we show, using either a genetic or pharmacological approach, that induction of UCP2 sensitizes melanomas to programmed cell death protein-1 blockade treatment and elicits effective anti-tumor responses. Together, this study demonstrates that targeting the UCP2 pathway is a potent strategy for alleviating the immunosuppressive TME and overcoming the primary resistance of programmed cell death protein-1 blockade.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Melanoma, Experimental/immunology , Skin Neoplasms/immunology , Tumor Microenvironment/immunology , Uncoupling Protein 2/immunology , Animals , Antineoplastic Agents, Immunological/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Dendritic Cells/immunology , Drug Resistance, Neoplasm/immunology , Female , Humans , Immunotherapy/methods , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Melanoma, Experimental/blood supply , Melanoma, Experimental/drug therapy , Melanoma, Experimental/mortality , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Skin Neoplasms/blood supply , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality , Survival Analysis , Treatment Outcome , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
6.
Nat Immunol ; 20(4): 515-516, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30862953

ABSTRACT

In the version of this article initially published, the bars were not aligned with the data points or horizontal axis labels in Fig. 5d, and the labels along each horizontal axis of Fig. 5j-l indicating the presence (+) or absence (-) of doxycycline (Dox) were incorrectly included with the labels below that axis. Also, the right vertical bar above Fig. 7b linking 'P = 0.0001' to the key was incorrect; the correct comparison is αPD-1 versus Dox + αPD-1. Similarly, the right vertical bar above Fig. 7e linking 'P = 0.0002' to the key was incorrect; the correct comparison is αPD-1 versus Rosig + αPD-1. The errors have been corrected in the HTML and PDF versions of the article.

7.
Immunity ; 55(10): 1953-1966.e10, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36174557

ABSTRACT

A major challenge in adoptive T cell immunotherapy is the discovery of natural T cell receptors (TCRs) with high activity and specificity to tumor antigens. Engineering synthetic TCRs for increased tumor antigen recognition is complicated by the risk of introducing cross-reactivity and by the poor correlation that can exist between binding affinity and activity of TCRs in response to antigen (peptide-MHC). Here, we developed TCR-Engine, a method combining genome editing, computational design, and deep sequencing to engineer the functional activity and specificity of TCRs on the surface of a human T cell line at high throughput. We applied TCR-Engine to successfully engineer synthetic TCRs for increased potency and specificity to a clinically relevant tumor-associated antigen (MAGE-A3) and validated their translational potential through multiple in vitro and in vivo assessments of safety and efficacy. Thus, TCR-Engine represents a valuable technology for engineering of safe and potent synthetic TCRs for immunotherapy applications.


Subject(s)
Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Antigens, Neoplasm , Humans , Immunotherapy , Peptides
8.
Immunity ; 49(6): 1148-1161.e7, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30552023

ABSTRACT

Anti-PD-1 immune checkpoint blockers can induce sustained clinical responses in cancer but how they function in vivo remains incompletely understood. Here, we combined intravital real-time imaging with single-cell RNA sequencing analysis and mouse models to uncover anti-PD-1 pharmacodynamics directly within tumors. We showed that effective antitumor responses required a subset of tumor-infiltrating dendritic cells (DCs), which produced interleukin 12 (IL-12). These DCs did not bind anti-PD-1 but produced IL-12 upon sensing interferon γ (IFN-γ) that was released from neighboring T cells. In turn, DC-derived IL-12 stimulated antitumor T cell immunity. These findings suggest that full-fledged activation of antitumor T cells by anti-PD-1 is not direct, but rather involves T cell:DC crosstalk and is licensed by IFN-γ and IL-12. Furthermore, we found that activating the non-canonical NF-κB transcription factor pathway amplified IL-12-producing DCs and sensitized tumors to anti-PD-1 treatment, suggesting a therapeutic strategy to improve responses to checkpoint blockade.


Subject(s)
Dendritic Cells/immunology , Interferon-gamma/immunology , Interleukin-12/immunology , Neoplasms/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Dendritic Cells/metabolism , Female , Humans , Immunotherapy/methods , Interferon-gamma/metabolism , Interleukin-12/administration & dosage , Interleukin-12/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , NF-kappa B/immunology , NF-kappa B/metabolism , Neoplasms/metabolism , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
9.
Nature ; 594(7864): 566-571, 2021 06.
Article in English | MEDLINE | ID: mdl-34079127

ABSTRACT

The persistence of undetectable disseminated tumour cells (DTCs) after primary tumour resection poses a major challenge to effective cancer treatment1-3. These enduring dormant DTCs are seeds of future metastases, and the mechanisms that switch them from dormancy to outgrowth require definition. Because cancer dormancy provides a unique therapeutic window for preventing metastatic disease, a comprehensive understanding of the distribution, composition and dynamics of reservoirs of dormant DTCs is imperative. Here we show that different tissue-specific microenvironments restrain or allow the progression of breast cancer in the liver-a frequent site of metastasis4 that is often associated with a poor prognosis5. Using mouse models, we show that there is a selective increase in natural killer (NK) cells in the dormant milieu. Adjuvant interleukin-15-based immunotherapy ensures an abundant pool of NK cells that sustains dormancy through interferon-γ signalling, thereby preventing hepatic metastases and prolonging survival. Exit from dormancy follows a marked contraction of the NK cell compartment and the concurrent accumulation of activated hepatic stellate cells (aHSCs). Our proteomics studies on liver co-cultures implicate the aHSC-secreted chemokine CXCL12 in the induction of NK cell quiescence through its cognate receptor CXCR4. CXCL12 expression and aHSC abundance are closely correlated in patients with liver metastases. Our data identify the interplay between NK cells and aHSCs as a master switch of cancer dormancy, and suggest that therapies aimed at normalizing the NK cell pool might succeed in preventing metastatic outgrowth.


Subject(s)
Breast Neoplasms/pathology , Hepatic Stellate Cells/cytology , Killer Cells, Natural/cytology , Animals , Cell Line, Tumor , Chemokine CXCL12/metabolism , Coculture Techniques , Female , Humans , Immunotherapy , Interferon-gamma , Liver Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Neoplasms, Experimental/pathology , Proteomics , Transcriptome , Tumor Microenvironment
11.
Proc Natl Acad Sci U S A ; 117(1): 541-551, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31889004

ABSTRACT

Cancer immunotherapies are increasingly combined with targeted therapies to improve therapeutic outcomes. We show that combination of agonistic anti-CD40 with antiangiogenic antibodies targeting 2 proangiogenic factors, vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (Ang2/ANGPT2), induces pleiotropic immune mechanisms that facilitate tumor rejection in several tumor models. On the one hand, VEGFA/Ang2 blockade induced regression of the tumor microvasculature while decreasing the proportion of nonperfused vessels and reducing leakiness of the remaining vessels. On the other hand, both anti-VEGFA/Ang2 and anti-CD40 independently promoted proinflammatory macrophage skewing and increased dendritic cell activation in the tumor microenvironment, which were further amplified upon combination of the 2 treatments. Finally, combined therapy provoked brisk infiltration and intratumoral redistribution of cytotoxic CD8+ T cells in the tumors, which was mainly driven by Ang2 blockade. Overall, these nonredundant synergistic mechanisms endowed T cells with improved effector functions that were conducive to more efficient tumor control, underscoring the therapeutic potential of antiangiogenic immunotherapy in cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , CD40 Antigens/agonists , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Tumor Microenvironment/drug effects , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Angiopoietin-2/antagonists & inhibitors , Angiopoietin-2/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CD40 Antigens/immunology , Cell Line, Tumor/transplantation , Disease Models, Animal , Drug Synergism , Female , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Neoplasms/blood supply , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
13.
J Pathol ; 250(1): 19-29, 2020 01.
Article in English | MEDLINE | ID: mdl-31471895

ABSTRACT

In non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs) significantly improve overall survival (OS). Tumor mutational burden (TMB) has emerged as a predictive biomarker for patients treated with ICIs. Here, we evaluated the predictive power of TMB measured by the Oncomine™ Tumor Mutational Load targeted sequencing assay in 76 NSCLC patients treated with ICIs. TMB was assessed retrospectively in 76 NSCLC patients receiving ICI therapy. Clinical data (RECIST 1.1) were collected and patients were classified as having either durable clinical benefit (DCB) or no durable benefit (NDB). Additionally, genetic alterations and PD-L1 expression were assessed and compared with TMB and response rate. TMB was significantly higher in patients with DCB than in patients with NDB (median TMB = 8.5 versus 6.0 mutations/Mb, Mann-Whitney p = 0.0244). 64% of patients with high TMB (cut-off = third tertile, TMB ≥ 9) were responders (DCB) compared to 33% and 29% of patients with intermediate and low TMB, respectively (cut-off = second and first tertile, TMB = 5-9 and TMB ≤ 4, respectively). TMB-high patients showed significantly longer progression-free survival (PFS) and OS (log-rank test p = 0.0014 for PFS and 0.0197 for OS). While identifying different subgroups of patients, combining PD-L1 expression and TMB increased the predictive power (from AUC 0.63 to AUC 0.65). Our results show that the TML panel is an effective tool to stratify patients for ICI treatment. A combination of biomarkers might maximize the predictive precision for patient stratification. Our study supports TMB evaluation through targeted NGS in NSCLC patient samples as a tool to predict response to ICI therapy. We offer recommendations for a reliable and cost-effective assessment of TMB in a routine diagnostic setting. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing , Lung Neoplasms/genetics , Mutation , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Clinical Decision-Making , Female , Genetic Predisposition to Disease , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Middle Aged , Molecular Targeted Therapy , Patient Selection , Phenotype , Precision Medicine , Predictive Value of Tests , Reproducibility of Results , Switzerland
14.
Cancer Immunol Immunother ; 69(1): 57-67, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31802183

ABSTRACT

Tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade attack by the immune system. Despite promising success with blockade of immune checkpoints like PD-1 the majority of patients does not respond to current immunotherapies. The degradation of tryptophan into immunosuppressive kynurenine is an important immunosuppressive pathway. Recent attempts to target the key enzymes of this pathway-IDO1 and TDO2-have so far failed to show therapeutic benefit in the clinic, potentially caused by insufficient target engagement. We, therefore, sought to add an alternative, highly efficient approach to block the degradation of tryptophan by inhibiting the expression of IDO1 and TDO2 using locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs). We show that LNA-modified ASOs can profoundly inhibit the expression of IDO1 and TDO2 in cancer cells in vitro without using a transfection reagent with IC50 values in the sub-micromolar range. We furthermore measured kynurenine production by ASO-treated cancer cells in vitro and observed potently reduced kynurenine levels. Accordingly, inhibiting IDO1 expression in cancer cells in an in vitro system leads to increased proliferation of activated T cells in coculture. We furthermore show that combined treatment of cancer cells in vitro with IDO1-specific ASOs and small molecule inhibitors can reduce the production of kynurenine by cancer cells in a synergistic manner. In conclusion, we propose that a combination of LNA-modified ASOs and small molecule inhibitors should be considered as a strategy for efficient blockade of the degradation of tryptophan into kynurenine in cancer immunotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Neoplasms/therapy , Oligonucleotides, Antisense/pharmacology , Tryptophan Oxygenase/antagonists & inhibitors , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Immunotherapy/methods , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inhibitory Concentration 50 , Kynurenine/immunology , Kynurenine/metabolism , Lymphocyte Activation/drug effects , Neoplasms/immunology , Oligonucleotides/administration & dosage , Oligonucleotides/chemistry , Oligonucleotides, Antisense/chemistry , T-Lymphocytes/immunology , Tryptophan/immunology , Tryptophan/metabolism , Tryptophan Oxygenase/metabolism
15.
Cancer Immunol Immunother ; 69(8): 1505-1517, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32296919

ABSTRACT

Natural killer (NK) cells are critically involved in anti-tumor immunity by targeting tumor cells. In this study, we show that intratumoral NK cells from NSCLC patients expressed elevated levels of the immune checkpoint receptor PD-1 on their cell surface. In contrast to the expression of activating receptors, PD-1+ NK cells co-expressed more inhibitory receptors compared to PD-1- NK cells. Intratumoral NK cells were less functional compared to peripheral NK cells, and this dysfunction correlated with PD-1 expression. Tumor cells expressing PD-L1 inhibited the functionality of PD-1+ NK cells in ex vivo models and induced PD-1 clustering at the immunological synapse between NK cells and tumor cells. Notably, treatment with PD-1 blockade was able to reverse PD-L1-mediated inhibition of PD-1+ NK cells. Our findings highlight the therapeutic potential of PD-1+ NK cells in immune checkpoint blockade and could guide the development of NK cell-stimulating agents in combination with PD-1 blockade.


Subject(s)
Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/immunology , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , B7-H1 Antigen/immunology , Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Case-Control Studies , Female , Follow-Up Studies , Humans , Immunotherapy , Killer Cells, Natural/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Middle Aged , Prognosis , Programmed Cell Death 1 Receptor/immunology , Tumor Cells, Cultured
16.
Cancer Immunol Immunother ; 68(5): 799-812, 2019 May.
Article in English | MEDLINE | ID: mdl-30770959

ABSTRACT

CV9201 is an RNActive®-based cancer immunotherapy encoding five non-small cell lung cancer-antigens: New York esophageal squamous cell carcinoma-1, melanoma antigen family C1/C2, survivin, and trophoblast glycoprotein. In a phase I/IIa dose-escalation trial, 46 patients with locally advanced (n = 7) or metastatic (n = 39) NSCLC and at least stable disease after first-line treatment received five intradermal CV9201 injections (400-1600 µg of mRNA). The primary objective of the trial was to assess safety. Secondary objectives included assessment of antibody and ex vivo T cell responses against the five antigens, and changes in immune cell populations. All CV9201 dose levels were well-tolerated and the recommended dose for phase IIa was 1600 µg. Most AEs were mild-to-moderate injection site reactions and flu-like symptoms. Three (7%) patients had grade 3 related AEs. No related grade 4/5 or related serious AEs occurred. In phase IIa, antigen-specific immune responses against ≥ 1 antigen were detected in 63% of evaluable patients after treatment. The frequency of activated IgD+CD38hi B cells increased > twofold in 18/30 (60%) evaluable patients. 9/29 (31%) evaluable patients in phase IIa had stable disease and 20/29 (69%) had progressive disease. Median progression-free and overall survival were 5.0 months (95% CI 1.8-6.3) and 10.8 months (8.1-16.7) from first administration, respectively. Two- and 3-year survival rates were 26.7% and 20.7%, respectively. CV9201 was well-tolerated and immune responses could be detected after treatment supporting further clinical investigation.


Subject(s)
B-Lymphocytes/immunology , Cancer Vaccines/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Immunotherapy/methods , Lung Neoplasms/therapy , RNA, Messenger/therapeutic use , T-Lymphocytes/immunology , Aged , Aged, 80 and over , Antigens, Neoplasm/genetics , Cancer Vaccines/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Cells, Cultured , Female , Humans , Immunotherapy/adverse effects , Injection Site Reaction/etiology , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Lymphocyte Activation , Male , Middle Aged , Neoplasm Staging , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/immunology , Survival Analysis
17.
Breast Cancer Res ; 20(1): 141, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30458879

ABSTRACT

BACKGROUND: The presence of circulating tumor cells (CTCs) in patients with breast cancer correlates to a bad prognosis. Yet, CTCs are detectable in only a minority of patients with progressive breast cancer, and factors that influence the abundance of CTCs remain elusive. METHODS: We conducted CTC isolation and enumeration in a selected group of 73 consecutive patients characterized by progressive invasive breast cancer, high tumor load and treatment discontinuation at the time of CTC isolation. CTCs were quantified with the Parsortix microfluidic device. Clinicopathological variables, blood counts at the time of CTC isolation and detailed treatment history prior to blood sampling were evaluated for each patient. RESULTS: Among 73 patients, we detected at least one CTC per 7.5 ml of blood in 34 (46%). Of these, 22 (65%) had single CTCs only, whereas 12 (35%) featured both single CTCs and CTC clusters. Treatment with the monoclonal antibody denosumab correlated with the absence of CTCs, both when considering all patients and when considering only those with bone metastasis. We also found that low red blood cell count was associated with the presence of CTCs, whereas high CA 15-3 tumor marker, high mean corpuscular volume, high white blood cell count and high mean platelet volume associated specifically with CTC clusters. CONCLUSIONS: In addition to blood count correlatives to single and clustered CTCs, we found that denosumab treatment associates with most patients lacking CTCs from their peripheral circulation. Prospective studies will be needed to validate the involvement of denosumab in the prevention of CTC generation.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Denosumab/pharmacology , Erythrocytes , Neoplastic Cells, Circulating/drug effects , Aged , Antineoplastic Agents/therapeutic use , Breast/pathology , Breast Neoplasms/blood , Breast Neoplasms/pathology , Cell Count/methods , Denosumab/therapeutic use , Disease Progression , Female , Humans , Microfluidic Analytical Techniques/methods , Middle Aged , Neoplasm Invasiveness/pathology , Prognosis , Retrospective Studies
18.
Cancer Immunol Immunother ; 67(5): 815-824, 2018 05.
Article in English | MEDLINE | ID: mdl-29487979

ABSTRACT

Cancer immunotherapies have significantly improved the prognosis of cancer patients. Despite the clinical success of targeting inhibitory checkpoint receptors, including PD-1 and/or CTLA-4 on T cells, only a minority of patients derive benefit from these therapies. New strategies to improve cancer immunotherapy are therefore needed. Combination therapy of checkpoint inhibitors with targeted agents has promisingly shown to increase the efficacy of immunotherapy. Here, we analyzed the immunomodulatory effects of the multi-receptor tyrosine kinase inhibitor axitinib and its efficacy in combination with immunotherapies. In different syngeneic murine tumor models, axitinib showed therapeutic efficacy that was not only mediated by VEGF-VEGFR inhibition, but also through the induction of anti-cancer immunity. Mechanistically, a significant reduction of immune-suppressive cells, including a decrease of tumor-promoting mast cells and tumor-associated macrophages was observed upon axitinib treatment. Inhibition of mast cells by axitinib as well as their experimental depletion led to reduced tumor growth. Of note, treatment with axitinib led to an improved T cell response, while the latter was pivotal for the therapeutic efficacy. Combination with immune checkpoint inhibitors anti-PD-1 and anti-TIM-3 and/or agonistic engagement of the activating receptor CD137 resulted in a synergistic therapeutic efficacy. This demonstrates non-redundant immune activation induced by axitinib via modulation of myeloid and mast cells. These findings provide important mechanistic insights into axitinib-mediated anti-cancer immunity and provide rationale for clinical combinations of axitinib with different immunotherapeutic modalities.


Subject(s)
Antibodies, Monoclonal/pharmacology , Carcinoma, Lewis Lung/drug therapy , Drug Synergism , Imidazoles/pharmacology , Immunosuppression Therapy , Indazoles/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Axitinib , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/pathology , Disease Models, Animal , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 2/immunology , Immunotherapy , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Protein Kinase Inhibitors/pharmacology , Tumor Cells, Cultured , Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
19.
Lancet ; 386(9998): 1049-56, 2015 Sep 12.
Article in English | MEDLINE | ID: mdl-26275735

ABSTRACT

BACKGROUND: One of the standard options in the treatment of stage IIIA/N2 non-small-cell lung cancer is neoadjuvant chemotherapy and surgery. We did a randomised trial to investigate whether the addition of neoadjuvant radiotherapy improves outcomes. METHODS: We enrolled patients in 23 centres in Switzerland, Germany and Serbia. Eligible patients had pathologically proven, stage IIIA/N2 non-small-cell lung cancer and were randomly assigned to treatment groups in a 1:1 ratio. Those in the chemoradiotherapy group received three cycles of neoadjuvant chemotherapy (100 mg/m(2) cisplatin and 85 mg/m(2) docetaxel) followed by radiotherapy with 44 Gy in 22 fractions over 3 weeks, and those in the control group received neoadjuvant chemotherapy alone. All patients were scheduled to undergo surgery. Randomisation was stratified by centre, mediastinal bulk (less than 5 cm vs 5 cm or more), and weight loss (5% or more vs less than 5% in the previous 6 months). The primary endpoint was event-free survival. Analyses were done by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00030771. FINDINGS: From 2001 to 2012, 232 patients were enrolled, of whom 117 were allocated to the chemoradiotherapy group and 115 to the chemotherapy group. Median event-free survival was similar in the two groups at 12·8 months (95% CI 9·7-22·9) in the chemoradiotherapy group and 11·6 months (8·4-15·2) in the chemotherapy group (p=0·67). Median overall survival was 37·1 months (95% CI 22·6-50·0) with radiotherapy, compared with 26·2 months (19·9-52·1) in the control group. Chemotherapy-related toxic effects were reported in most patients, but 91% of patients completed three cycles of chemotherapy. Radiotherapy-induced grade 3 dysphagia was seen in seven (7%) patients. Three patients died in the control group within 30 days after surgery. INTERPRETATION: Radiotherapy did not add any benefit to induction chemotherapy followed by surgery. We suggest that one definitive local treatment modality combined with neoadjuvant chemotherapy is adequate to treat resectable stage IIIA/N2 non-small-cell lung cancer. FUNDING: Swiss State Secretariat for Education, Research and Innovation (SERI), Swiss Cancer League, and Sanofi.


Subject(s)
Carcinoma, Non-Small-Cell Lung/therapy , Chemoradiotherapy, Adjuvant/methods , Lung Neoplasms/therapy , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/secondary , Chemoradiotherapy, Adjuvant/adverse effects , Female , Humans , Lung Neoplasms/pathology , Lymphatic Metastasis , Male , Middle Aged , Neoadjuvant Therapy/adverse effects , Neoadjuvant Therapy/methods , Neoplasm Staging , Pneumonectomy/methods , Survival Analysis , Treatment Outcome
20.
Cancer Immunol Immunother ; 65(1): 1-11, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26541588

ABSTRACT

Tumor-infiltrating lymphocytes play an important role in cell-mediated immune destruction of cancer cells and tumor growth control. We investigated the heterogeneity of immune cell infiltrates between primary non-small cell lung carcinomas (NSCLC) and corresponding metastases. Formalin-fixed, paraffin-embedded primary tumors and corresponding metastases from 34 NSCLC patients were analyzed by immunohistochemistry for CD4, CD8, CD11c, CD68, CD163 and PD-L1. The percentage of positively stained cells within the stroma and tumor cell clusters was recorded and compared between primary tumors and metastases. We found significantly fewer CD4(+) and CD8(+) T cells within tumor cell clusters as compared with the stromal compartment, both in primary tumors and corresponding metastases. CD8(+) T cell counts were significantly lower in metastatic lesions than in the corresponding primary tumors, both in the stroma and the tumor cell islets. Of note, the CD8/CD4 ratio was significantly reduced in metastatic lesions compared with the corresponding primary tumors in tumor cell islets, but not in the stroma. We noted significantly fewer CD11c(+) cells and CD68(+) as well as CD163(+) macrophages in tumor cell islets compared with the tumor stroma, but no difference between primary and metastatic lesions. Furthermore, the CD8/CD68 ratio was higher in primary tumors than in the corresponding metastases. We demonstrate a differential pattern of immune cell infiltration in matched primary and metastatic NSCLC lesions, with a significantly lower density of CD8(+) T cells in metastatic lesions compared with the primary tumors. The lower CD8/CD4 and CD8/CD68 ratios observed in metastases indicate a rather tolerogenic and tumor-promoting microenvironment at the metastatic site.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Immunohistochemistry , Lung Neoplasms/pathology , Male , Neoplasm Metastasis , Prognosis , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL