Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Prenat Diagn ; 38(13): 1096-1102, 2018 12.
Article in English | MEDLINE | ID: mdl-30303263

ABSTRACT

OBJECTIVE: The Duchenne/Becker muscular dystrophy (DMD) carrier screening includes the evaluation of mutations in DMD gene, and the most widely used analysis is the multiplex ligation-dependent probe amplification (MLPA) for the DMD deletions/duplications detection. The high frequency of de novo mutations permits to estimate a risk up to 20% of mosaicisms for mothers of sporadic DMD children. The purpose of this study is to evaluate alternative analytical strategy for the detection of mosaics carrier women, in order to improve the recurrence risk estimation. METHOD: Different DNA and RNA analyses were conducted on samples from a woman that conceived a DMD fetus without previous family history of dystrophynopathy. RESULTS: Standard MLPA analysis failed to identify mosaicism, even if MLPA doses suggested it. Electrophoresis and direct sequencing conducted on RNA permitted to detect two different amplicons of cDNAs, demonstrating the presence of somatic mosaicism. Subsequent detection of a second affected fetus confirmed the mosaic status on the mother. CONCLUSION: The implementation of RNA analysis in diagnostic algorithm can increase the sensitivity of carrier test for mothers of sporadic affected patients, permitting detection of mosaic status. A revision of analytical guidelines is needed in order to improve the recurrence risk estimation and support prenatal genetic counseling.


Subject(s)
DNA, Complementary/analysis , DNA/analysis , Dystrophin/genetics , Genetic Carrier Screening/methods , Mosaicism , Muscular Dystrophy, Duchenne/genetics , RNA/analysis , Abortion, Induced , Adult , Chorionic Villi Sampling , Electrophoresis/methods , Female , Humans , Multiplex Polymerase Chain Reaction , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA/methods
2.
Hum Mol Genet ; 21(16): 3647-54, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22619378

ABSTRACT

X-linked retinitis pigmentosa (XLRP) is genetically heterogeneous with two causative genes identified, RPGR and RP2. We previously mapped a locus for a severe form of XLRP, RP23, to a 10.71 Mb interval on Xp22.31-22.13 containing 62 genes. Candidate gene screening failed to identify a causative mutation, so we adopted targeted genomic next-generation sequencing of the disease interval to determine the molecular cause of RP23. No coding variants or variants within or near splice sites were identified. In contrast, a variant deep within intron 9 of OFD1 increased the splice site prediction score 4 bp upstream of the variant. Mutations in OFD1 cause the syndromic ciliopathies orofaciodigital syndrome-1, which is male lethal, Simpson-Golabi-Behmel syndrome type 2 and Joubert syndrome. We tested the effect of the IVS9+706A>G variant on OFD1 splicing in vivo. In RP23 patient-derived RNA, we detected an OFD1 transcript with the insertion of a cryptic exon spliced between exons 9 and 10 causing a frameshift, p.N313fs.X330. Correctly spliced OFD1 was also detected in patient-derived RNA, although at reduced levels (39%), hence the mutation is not male lethal. Our data suggest that photoreceptors are uniquely susceptible to reduced expression of OFD1 and that an alternative disease mechanism can cause XLRP. This disease mechanism of reduced expression for a syndromic ciliopathy gene causing isolated retinal degeneration is reminiscent of CEP290 intronic mutations that cause Leber congenital amaurosis, and we speculate that reduced dosage of correctly spliced ciliopathy genes may be a common disease mechanism in retinal degenerations.


Subject(s)
Frameshift Mutation , Proteins/genetics , Retinitis Pigmentosa/etiology , Amino Acid Sequence , Base Sequence , Chromosomes, Human, X , Exons , Humans , Introns , Male , Molecular Sequence Data , RNA Splice Sites , Retinitis Pigmentosa/genetics , Sequence Analysis, DNA
3.
Hum Mutat ; 21(2): 169, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12552565

ABSTRACT

X-linked congenital stationary night blindness (CSNBX) is a genetically and phenotypically heterogeneous non-progressive disorder, characterised by impaired night vision but grossly normal retinal appearance. Other more variable features include reduction in visual acuity, myopia, nystagmus and strabismus. Genetic mapping studies by other groups, and our own studies of British patients, identified key recombination events indicating the presence of at least 2 disease genes on Xp11. Two causative genes (CACNA1F and NYX) for CSNBX have now been identified through positional cloning strategies. In this report, we present the results of comprehensive mutation screening in 14 CSNBX families, three with mutations in the CACNA1F gene and 10 with mutations in the NYX gene. In one family we failed to identify the mutation after testing RP2, RPGR, NYX and CACNA1F. NYX gene mutations are a more frequent cause of CSNBX, although there is evidence for founder mutations. Our report of patient population mutation screening for both CSNBX genes, and our exclusion of RP2 and RGPR, indicates that mutations in CACNA1F and NYX are likely to account for all CSNBX.


Subject(s)
Calcium Channels, L-Type , Calcium Channels/genetics , Mutation/genetics , Proteoglycans/genetics , DNA Mutational Analysis , Exons/genetics , Female , Founder Effect , Genetic Diseases, X-Linked/genetics , Humans , Leukocytes/chemistry , Male , Night Blindness/congenital , Night Blindness/genetics , Pedigree , United Kingdom
4.
Hum Mol Genet ; 14(2): 267-77, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15563507

ABSTRACT

The analysis of a lymphoblastoid cell line (5106), derived from a rare individual of normal intelligence with an unmethylated full mutation of the FMR1 gene, allowed us to reconstruct the chain of molecular events leading to the FMR1 inactivation and to fragile X syndrome. We found that lack of DNA methylation of the entire promoter region, including the expanded CGG repeat, correlates with methylation of lysine 4 residue on the N-tail of histone H3 (H3-K4), as in normal controls. Normal levels of FMR1 mRNA were detected by real-time fluorescent RT-PCR (0.8-1.4 times compared with a control sample), but mRNA translation was less efficient (-40%), as judged by polysome profiling, resulting in reduced levels of FMRP protein (approximately 30% of a normal control). These results underline once more that CGG repeat amplification per se does not prevent FMR1 transcription and FMRP production in the absence of DNA methylation. Surprisingly, we found by chromatin immunoprecipitation that cell line 5106 has deacetylated histones H3 and H4 as well as methylated lysine 9 on histone H3 (H3-K9), like fragile X cell lines, in both the promoter and exon 1. This indicates that these two epigenetic marks (i.e. histone deacetylation and H3-K9 methylation) can be established in the absence of DNA methylation and do not interfere with active gene transcription, contrary to expectation. Our results also suggest that the molecular pathways regulating DNA and H3-K4 methylation are independent from those regulating histone acetylation and H3-K9 methylation.


Subject(s)
Gene Silencing , Nerve Tissue Proteins/genetics , RNA-Binding Proteins/genetics , Epigenesis, Genetic , Female , Fragile X Mental Retardation Protein , Humans , Male , Mutation , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism
5.
Am J Med Genet A ; 122A(4): 325-34, 2003 Nov 01.
Article in English | MEDLINE | ID: mdl-14518071

ABSTRACT

Hereditary nonpolyposis colorectal cancer (HNPCC) is a cancer-predisposing condition caused by inactivating mutations in at least four genes (MSH2, MLH1, MSH6, and PMS2) belonging to the mismatch repair system. At present, availability of the microsatellite instability (MSI) test allows screening of a relevant fraction of patients with a constellation of features suggestive of HNPCC. By analogy with several other genetic disorders, it is clearly emerging that the term HNPCC encompasses a wide spectrum of different clinical presentations, including Muir-Torre syndrome, Turcot syndrome, and the neurofibromatosis-hematological malignancy association. Notwithstanding the remarkable genetic and allelic heterogeneity, a few consistent phenotype-genotype associations can be recognized. Mutations in the MSH2 gene entail higher risks of developing cancer, including extraintestinal ones, than MLH1 alterations. MSH2 also accounts for most cases of Muir-Torre syndrome, which is characterized by the presence of sebaceous skin tumors. The few known PMS2 mutations show a striking association with the presence of gliomas, which are the hallmark of the Turcot variant of HNPCC. Homozygotes for mismatch repair gene mutations present with stigmata of neurofibromatosis 1 and usually die in childhood due to a variety of leukemias and lymphomas. While such correlations are being defined, the underlying reasons have only partially been elucidated, and may include heterogeneous gene functions and properties; types of mutation, some of which may exert dominant negative effects; and genetic and environmental modifiers.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Repair Enzymes , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/physiopathology , DNA Repair/genetics , DNA Repair/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Mismatch Repair Endonuclease PMS2
SELECTION OF CITATIONS
SEARCH DETAIL