ABSTRACT
BACKGROUND: Immune checkpoint inhibitors (ICIs), administered alone or combined with chemotherapy, are the standard of care in advanced non-oncogene addicted Non-Small Cell Lung Cancer (NSCLC). Despite these treatments' success, most long-term survival benefit is restricted to approximately 20% of patients, highlighting the need to identify novel biomarkers to optimize treatment strategies. In several solid tumors, immune soluble factors, the activatory CD137+ Tcells, and the immunosuppressive cell subsets Tregs and MDSCs (PMN(Lox1+)-MDSC and M-MDSCs) correlated with responses to ICIs and clinical outcomes thus becoming appealing predictive and prognostic factors. This study investigated the role of distinct CD137+ Tcell subsets, Tregs, MDSCs, and immune-soluble factors in NSCLC patients as possible biomarkers. METHODS: The levels of T cells, MDSCs and soluble factors were evaluated in 89 metastatic NSCLC patients who underwent ICIs as first- or second-line treatment. T cell analysis was performed by cytoflurimetry evaluating Tregs and different CD137+ Tcell subsets also combined with CD3+, CD8+, PD1+, and Ki67+ markers. Circulating cytokines and immune checkpoints were also evaluated by Luminex analysis. All these parameters were correlated with several clinical factors (age, sex, smoking status, PS and TPS), response to therapy, PFS , and OS . The analyses were conducted in the overall population and in patients treated with ICIs as first-line (naïve patients). RESULTS: In both groups of patients, high levels of circulating CD137+ and CD137+PD1+ T cells (total, CD4 and CD8) and the soluble factor LAG3 positively correlated with response to therapy. In naïve patients, PMN(Lox1+)-MDSCs negatively correlated with clinical response, and a high percentage of Tregs was associated with favorable survival. Moreover, the balance between Treg/CD137+ Tcells or PMN(Lox1+)-MDSC/CD137+ Tcells was higher in non-responding patients and was associated with poor survival. CD137+ Tcells and Tregs resulted as two positive independent prognostic factors. CONCLUSION: High levels of CD137+, CD137+PD1+ Tcells and sLAG3 could predict the response to ICIs in NSCLC patients independently by previous therapy. Combining the evaluation of CD137+ Tcells and Tregs also as Treg/CD137+ T cells ratio it is possible to identify naive patients with longer survival.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , T-Lymphocytes, Regulatory , Lung Neoplasms/pathology , Prognosis , Biomarkers , Immunotherapy/methodsABSTRACT
BACKGROUND: Immune checkpoint inhibitors (ICIs) have particular, immune-related adverse events (irAEs), as a consequence of interfering with self-tolerance mechanisms. The incidence of irAEs varies depending on ICI class, administered dose and treatment schedule. The aim of this study was to define a baseline (T0) immune profile (IP) predictive of irAE development. METHODS: A prospective, multicenter study evaluating the immune profile (IP) of 79 patients with advanced cancer and treated with anti-programmed cell death protein 1 (anti-PD-1) drugs as a first- or second-line setting was performed. The results were then correlated with irAEs onset. The IP was studied by means of multiplex assay, evaluating circulating concentration of 12 cytokines, 5 chemokines, 13 soluble immune checkpoints and 3 adhesion molecules. Indoleamine 2, 3-dioxygenase (IDO) activity was measured through a modified liquid chromatography-tandem mass spectrometry using the high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) method. A connectivity heatmap was obtained by calculating Spearman correlation coefficients. Two different networks of connectivity were constructed, based on the toxicity profile. RESULTS: Toxicity was predominantly of low/moderate grade. High-grade irAEs were relatively rare, while cumulative toxicity was high (35%). Positive and statistically significant correlations between the cumulative toxicity and IP10 and IL8, sLAG3, sPD-L2, sHVEM, sCD137, sCD27 and sICAM-1 serum concentration were found. Moreover, patients who experienced irAEs had a markedly different connectivity pattern, characterized by disruption of most of the paired connections between cytokines, chemokines and connections of sCD137, sCD27 and sCD28, while sPDL-2 pair-wise connectivity values seemed to be intensified. Network connectivity analysis identified a total of 187 statistically significant interactions in patients without toxicity and a total of 126 statistically significant interactions in patients with toxicity. Ninety-eight interactions were common to both networks, while 29 were specifically observed in patients who experienced toxicity. CONCLUSIONS: A particular, common pattern of immune dysregulation was defined in patients developing irAEs. This immune serological profile, if confirmed in a larger patient population, could lead to the design of a personalized therapeutic strategy in order to prevent, monitor and treat irAEs at an early stage.
Subject(s)
Antineoplastic Agents, Immunological , Neoplasms , Humans , Prospective Studies , Tandem Mass Spectrometry , Antineoplastic Agents, Immunological/therapeutic use , Neoplasms/drug therapy , Cytokines , Retrospective StudiesABSTRACT
BACKGROUND: Fibroblast growth factor receptor (FGFR) gene family alterations are found in several cancers, indicating their importance as potential therapeutic targets. The FGFR-tyrosine kinase inhibitor (TKI) pemigatinib has been introduced in the treatment of advanced cholangiocarcinoma and more recently for relapsed or refractory myeloid/lymphoid neoplasms with FGFR2 and FGFR1 rearrangements, respectively. Several clinical trials are currently investigating the possible combination of pemigatinib with immunotherapy. In this study, we analyzed the biological and molecular effects of pemigatinib on different cancer cell models (lung, bladder, and gastric), which are currently objective of clinical trial investigations. METHODS: NCI-H1581 lung, KATO III gastric and RT-112 bladder cancer cell lines were evaluated for FGFR expression by qRT-PCR and Western blot. Cell lines were treated with Pem and then characterized for cell proliferation, apoptosis, production of intracellular reactive oxygen species (ROS), and induction of senescence. The expression of microRNAs with tumor suppressor functions was analyzed by qRT-PCR, while modulation of the proteins coded by their target genes was evaluated by Western blot and mRNA. Descriptive statistics was used to analyze the various data and student's t test to compare the analysis of two groups. RESULTS: Pemigatinib exposure triggered distinct signaling pathways and reduced the proliferative ability of all cancer cells, inducing G1 phase cell cycle arrest and strong intracellular stress resulting in ROS production, senescence and apoptosis. Pemigatinib treatment also caused the upregulation of microRNAs (miR-133b, miR-139, miR-186, miR-195) with tumor suppressor functions, along with the downregulation of validated protein targets with oncogenic roles (c-Myc, c-MET, CDK6, EGFR). CONCLUSIONS: These results contribute to clarifying the biological effects and molecular mechanisms mediated by the anti-FGFR TKI pemigatinib in distinct tumor settings and support its exploitation for combined therapies.
Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Up-Regulation/genetics , Reactive Oxygen Species , Cell Cycle Checkpoints , G1 PhaseABSTRACT
Pembrolizumab, an anti-PD-1 antibody, has been approved as first-line treatment for recurrent or metastatic head and neck squamous cell carcinoma ((R/M) HNSCC). However, only a minority of patients benefit from immunotherapy, which highlights the need to identify novel biomarkers to optimize treatment strategies. CD137+ T cells have been identified as tumour-specific T cells correlated with immunotherapy responses in several solid tumours. In this study, we investigated the role of circulating CD137+ T cells in (R/M) HNSCC patients undergoing pembrolizumab treatment. PBMCs obtained from 40 (R/M) HNSCC patients with a PD-L1 combined positive score (CPS) ≥1 were analysed at baseline via cytofluorimetry for the expression of CD137, and it was found that the percentage of CD3+CD137+ cells is correlated with the clinical benefit rate (CBR), PFS, and OS. The results show that levels of circulating CD137+ T cells are significantly higher in responder patients than in non-responders (p = 0.03). Moreover, patients with CD3+CD137+ percentage ≥1.65% had prolonged OS (p = 0.02) and PFS (p = 0.02). Multivariate analysis, on a combination of biological and clinical parameters, showed that high levels of CD3+CD137+ cells (≥1.65%) and performance status (PS) = 0 are independent prognostic factors of PFS (CD137+ T cells, p = 0.007; PS, p = 0.002) and OS (CD137+ T cells, p = 0.006; PS, p = 0.001). Our results suggest that levels of circulating CD137+ T cells could serve as biomarkers for predicting the response of (R/M) HNSCC patients to pembrolizumab treatment, thus contributing to the success of anti-cancer treatment.
Subject(s)
Head and Neck Neoplasms , T-Lymphocytes , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Head and Neck Neoplasms/drug therapy , BiomarkersABSTRACT
BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a very aggressive cancer showing the presence of high cancer stem cells (CSCs). Doublecortin-like kinase1 (DCLK1) has been demonstrated as a CSC marker in different gastroenterological solid tumors. Our aim was to evaluate in vitro the expression and the biological function of DCLK1 in intrahepatic CCA (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS: Specimens surgically resected of human CCA were enzymatically digested, submitted to immunosorting for specific CSC markers (LGR5 [leucine-rich repeat-containing G protein-coupled receptor], CD [clusters of differentiation] 90, EpCAM [epithelial cell adhesion molecule], CD133, and CD13), and primary cell cultures were prepared. DCLK1 expression was analyzed in CCA cell cultures by real-time quantitative PCR, western blot, and immunofluorescence. Functional studies have been performed by evaluating the effects of selective DCLK1 inhibitor (LRRK2-IN-1) on cell proliferation (MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, cell population doubling time), apoptosis, and colony formation capacity. DCLK1 was investigated in situ by immunohistochemistry and real-time quantitative PCR. DCLK1 serum concentration was analyzed by enzyme-linked immunosorbent assay. We describe DCLK1 in CCA with an increased gene and protein DCLK1 expression in pCCALGR5+ and in iCCACD133+ cells compared with unsorted cells. LRRK2-IN-1 showed an anti-proliferative effect in a dose-dependent manner. LRRK2-IN-1 markedly impaired cell proliferation, induced apoptosis, and decreased colony formation capacity and colony size in both iCCA and pCCA compared with the untreated cells. In situ analysis confirmed that DCLK1 is present only in tumors, and not in healthy tissue. Interestingly, DCLK1 was detected in the human serum samples of patients with iCCA (high), pCCA (high), HCC (low), and cirrhosis (low), but it was almost undetectable in healthy controls. CONCLUSIONS: DCLK1 characterizes a specific CSC subpopulation of iCCACD133+ and pCCALGR5+ , and its inhibition exerts anti-neoplastic effects in primary CCA cell cultures. Human DCLK1 serum might represent a serum biomarker for the early CCA diagnosis.
Subject(s)
Bile Duct Neoplasms/genetics , Biomarkers, Tumor/biosynthesis , Cholangiocarcinoma/genetics , Intracellular Signaling Peptides and Proteins/biosynthesis , Protein Serine-Threonine Kinases/biosynthesis , Receptors, G-Protein-Coupled/biosynthesis , Bile Duct Neoplasms/pathology , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/pathology , Doublecortin-Like Kinases , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Neoplastic Stem Cells/pathology , Protein Serine-Threonine Kinases/genetics , Receptors, G-Protein-Coupled/geneticsABSTRACT
Blocking the Programmed Cell Death Protein 1 (PD-1)/programmed death ligand-1 (PD-L1) axis has demonstrated great efficacy in cancer immunotherapy treatment and remains the central modality of immune targeting. To support the rational and tailored use of these drugs, it is important to identify reliable biomarkers related to survival. The role of the soluble form of the PD-L1 (sPD-L1) as a prognostic biomarker related to survival in solid cancer patients treated with immunotherapy has not yet been consistently evaluated. A systematic literature search of original articles in PubMed, MEDLINE and Scopus was conducted. Studies reporting hazard ratios (HRs) with a 95% confidence interval (CI) or Kaplan−Meier curves or individual patient data for overall survival (OS) or progression-free survival (PFS) associated with baseline levels of sPD-L1 in cancer patients undergoing immunotherapy treatment were considered eligible. Twelve studies involving 1076 patients and different tumor types treated with immunotherapy were included in the analysis. High blood levels of sPD-L1 correlated with poorer OS and PFS in cancer patients treated with immunotherapy (HR = 1.49, 95%CI: 1.15, 1.93, p < 0.01, I2 = 77% for OS; HR = 1.59, 95%CI: 1.20, 2.12, p < 0.01, I2 = 82% for PFS). A subgroup analysis highlighted that high levels of sPD-L1 were associated with worse survival in patients affected by NSCLC (HR = 1.81 95%CI: 1.09−3.00, p = 0.02, I2 = 83% for OS; HR = 2.18, 95%CI: 1.27−3.76, p < 0.01, I2 = 88% for PFS). An HR > 1 indicated that patients with low levels of sPD-L1 have the highest rates of OS/PFS. In this meta-analysis, we clarified the role of sPD-L1 in different solid cancers treated exclusively with Immune checkpoint inhibitors (ICIs). sPD-L1 could represent a non-invasive biomarker that is easily dosable in the blood of patients. The pooled data from the selected studies showed that a high circulating concentration of sPD-L1 in cancer patients correlates with worse survival, suggesting that it may be a helpful prognostic biomarker for the selection of cancer patients before immunotherapy, thus improving the efficacy of ICIs and avoiding unnecessary treatment.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , B7-H1 Antigen , Prognosis , Immunotherapy , Immunologic FactorsABSTRACT
Despite diagnostic and therapeutic improvements, glioblastoma (GB) remains one of the most threatening brain tumor in adults, underlining the urgent need of new therapeutic targets. Lectins are glycan-binding proteins that regulate several biological processes through the recognition of specific sugar motifs. Lectins and their ligands are found on immune cells, endothelial cells and, also, tumor cells, pointing out a strong correlation among immunity, tumor microenvironment and vascularization. In GB, altered glycans and lectins contribute to tumor progression and immune evasion, shaping the tumor-immune landscape promoting immunosuppressive cell subsets, such as myeloid-derived suppressor cells (MDSCs) and M2-macrophages, and affecting immunoeffector populations, such as CD8+ T cells and dendritic cells (DCs). Here, we discuss the latest knowledge on the immune cells, immune related lectin receptors (C-type lectins, Siglecs, galectins) and changes in glycosylation that are involved in immunosuppressive mechanisms in GB, highlighting their interest as possible novel therapeutical targets.
Subject(s)
Glioblastoma , CD8-Positive T-Lymphocytes , Endothelial Cells/metabolism , Galectins/metabolism , Humans , Immunosuppression Therapy , Lectins, C-Type , Polysaccharides/metabolism , Tumor MicroenvironmentABSTRACT
BACKGROUND: Despite the efficacy of immune checkpoint inhibitors (ICIs) only the 20-30% of treated patients present long term benefits. The metabolic changes occurring in the gut microbiota metabolome are herein proposed as a factor potentially influencing the response to immunotherapy. METHODS: The metabolomic profiling of gut microbiota was characterized in 11 patients affected by non-small cell lung cancer (NSCLC) treated with nivolumab in second-line treatment with anti-PD-1 nivolumab. The metabolomics analyses were performed by GC-MS/SPME and 1H-NMR in order to detect volatile and non-volatile metabolites. Metabolomic data were processed by statistical profiling and chemometric analyses. RESULTS: Four out of 11 patients (36%) presented early progression, while the remaining 7 out of 11 (64%) presented disease progression after 12 months. 2-Pentanone (ketone) and tridecane (alkane) were significantly associated with early progression, and on the contrary short chain fatty acids (SCFAs) (i.e., propionate, butyrate), lysine and nicotinic acid were significantly associated with long-term beneficial effects. CONCLUSIONS: Our preliminary data suggest a significant role of gut microbiota metabolic pathways in affecting response to immunotherapy. The metabolic approach could be a promising strategy to contribute to the personalized management of cancer patients by the identification of microbiota-linked "indicators" of early progressor and long responder patients.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Gastrointestinal Microbiome , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immunotherapy , Lung Neoplasms/drug therapy , MetabolomicsABSTRACT
BACKGROUND: The advent of immune checkpoint inhibitors (ICIs) has considerably expanded the armamentarium against non-small cell lung cancer (NSCLC) contributing to reshaping treatment paradigms in the advanced disease setting. While promising tissue- and plasma-based biomarkers are under investigation, no reliable predictive factor is currently available to aid in treatment selection. METHODS: Patients with stage IIIB-IV NSCLC receiving nivolumab at Sant'Andrea Hospital and Regina Elena National Cancer Institute from June 2016 to July 2017 were enrolled onto this study. Major clinicopathological parameters were retrieved and correlated with patients' survival outcomes in order to assess their prognostic value and build a useful tool to assist in the decision making process. RESULTS: A total of 102 patients were included in this study. The median age was 69 years (range 44-85 years), 69 (68%) were male and 52% had ECOG PS 0. Loco-regional/distant lymph nodes were the most commonly involved site of metastasis (71%), followed by lung parenchyma (67%) and bone (26%). Overall survival (OS) in the whole patients' population was 83.6%, 63.2% and 46.9% at 3, 6 and 12 months, respectively; while progression-free survival (PFS) was 66.5%, 44.4% and 26.4% at 3, 6 and 12 months, respectively. At univariate analysis, age ≥ 69 years (P = 0.057), ECOG PS (P < 0.001), the presence of liver (P < 0.001), lung (P = 0.017) metastases, lymph nodes only involvement (P = 0.0145) were significantly associated with OS and ECOG PS (P < 0.001) and liver metastases (P < 0.001), retained statistical significance at multivariate analysis. A prognostic nomogram based on three variables (liver and lung metastases and ECOG PS) was built to assign survival probability at 3, 6, and 12 months after nivolumab treatment commencement. CONCLUSION: We developed a nomogram based on easily available and inexpensive clinical factors showing a good performance in predicting individual OS probability among NSCLC patients treated with nivolumab. This prognostic device could be valuable to clinicians in more accurately driving treatment decision in daily practice as well as enrollment onto clinical trials.
Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Nivolumab/therapeutic use , Nomograms , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Predictive Value of Tests , Prognosis , Retrospective Studies , Survival Analysis , Treatment OutcomeABSTRACT
OBJECTIVE: To investigate the association of cancer stem cell biomarker aldehyde dehydrogenase-1 (ALDH1) with ovarian cancer patients' prognosis and clinico-pathological characteristics. METHODS: The electronic searches were performed in January 2018 through the databases PubMed, MEDLINE and Scopus by searching the terms: "ovarian cancer" AND "immunohistochemistry" AND ["aldehyde dehydrogenase-1" OR "ALDH1" OR "cancer stem cell"]. Studies evaluating the impact of ALDH1 expression on ovarian cancer survival and clinico-pathological variables were selected. RESULTS: 233 studies were retrieved. Thirteen studies including 1885 patients met all selection criteria. ALDH1-high expression was found to be significantly associated with poor 5-year OS (ORâ¯=â¯3.46; 95% CI: 1.61-7.42; Pâ¯=â¯0.001, random effects model) and 5-year PFS (ORâ¯=â¯2.14; 95% CI: 1.11-4.13; Pâ¯=â¯0.02, random effects model) in ovarian cancer patients. No correlation between ALDH1 expression and tumor histology (ORâ¯=â¯0.60; 95% CI: 0.36-1.02; Pâ¯=â¯0.06, random effects model), FIGO Stage (ORâ¯=â¯0.65; 95% CI: 0.33-1.30; Pâ¯=â¯0.22, random effects model), tumor grading (ORâ¯=â¯0.76; 95% CI: 0.40-1.45; Pâ¯=â¯0.41, random effects model) lymph nodal status (ORâ¯=â¯2.05; 95% CI: 0.81-5.18; Pâ¯=â¯0.13, random effects model) or patients' age at diagnosis (ORâ¯=â¯0.83; 95% CI: 0.54-1.29; Pâ¯=â¯0.41, fixed effects model) was identified. CONCLUSIONS: Basing on the available evidence, this meta-analysis showed that high levels of ALDH1 expression correlate with worse OS and PFS in ovarian cancer patients.
Subject(s)
Isoenzymes/biosynthesis , Ovarian Neoplasms/enzymology , Retinal Dehydrogenase/biosynthesis , Aldehyde Dehydrogenase 1 Family , Female , Humans , Isoenzymes/metabolism , Ovarian Neoplasms/blood , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Prognosis , Retinal Dehydrogenase/metabolism , Survival AnalysisABSTRACT
Fibroblast Growth Factor Receptors (FGFRs) are emerging as key factors involved in tumorigenesis, tumor microenvironment remodeling and acquired resistance to targeted therapies. Pemigatinib is a Tyrosine-Kinase Inhibitor that selectively targets aberrant FGFR1, FGFR2 and FGFR3. Pemigatinib is now approved for advanced-stage cholangiocarcinoma (CCA) but data suggests that other tumor histotypes exhibit FGFR alterations, thus hypothesizing its potential efficacy in other cancer settings. The present systematic review, based on PRISMA guidelines, aims to synthetize and critically interpret the results of all available preclinical and clinical evidence regarding Pemigatinib use in cancer. In April 2024, an extensive search was performed in PubMed, MEDLINE, and Scopus databases using the keyword "Pemigatinib". Twenty-seven studies finally met all inclusion criteria. The promising results emerging from Pemigatinib preclinical and clinical studies pave the way for Pemigatinib extension to multiple solid cancer settings.
Subject(s)
Pyrimidines , Receptors, Fibroblast Growth Factor , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy/methods , Morpholines/pharmacology , Morpholines/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Precision Medicine/methods , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/metabolism , Treatment Outcome , /therapeutic useABSTRACT
Objective: The role of T cells in the pathogenesis of systemic lupus erythematosus (SLE) has recently gained attention. Costimulatory molecules are membrane proteins strictly associated with T-cell receptor (TCR), acting by activating or inhibiting T cells and antigen-presenting cells (APC) through direct and reverse signaling, thus becoming responsible for the development of effector T cells or regulatory T cells. The primary objective of the present case-control study was to evaluate the cell membrane expression of CD137 on T cells and the serum concentration of CD137 (sCD137) in a SLE cohort. Materials: We enrolled SLE patients and sex/age-matched healthy subjects (HS). Disease activity was assessed by SLEDAI-2K. By application of flow cytometry, we evaluated the expression of CD137 on CD4+ and CD8+ lymphocytes. ELISA test was performed to evaluate serum levels of sCD137. Results: Twenty-one SLE patients (M/F 1/20; median age 48 years (IQR 17); median disease duration 144 months (IQR 204)) were evaluated. SLE patients showed %CD3+CD137+ cells significantly higher compared to HS (median 5.32 (IQR 6.11) versus 3.3 (IQR 1.8), p = 0.001). In SLE patients, %CD4+CD137+ cells positively correlated with SLEDAI-2K (p = 0.0082, r = 0.58, CI (0.15-0.82); indeed, %CD4+CD137+ cells were significantly lower in SLE patients with a remission status compared to those not reaching this condition (median 1.07 (IQR 0.91) versus 1.58 (IQR 2.42), p = 0.013). Accordingly, sCD137 levels were significantly lower in remission status (31.30 pg/mL (IQR 102.2 versus median 122.8 pg/mL (IQR 536); p = 0.03) and correlated with %CD4+CD137+ cells (p = 0.012, r = 0.60, CI (0.15-0.84)). Conclusion: Our results suggest a possible involvement of CD137-CD137L axis in SLE pathogenesis, as demonstrated by higher expression of CD137 on CD4+ cells in SLE compared with HS. Furthermore, the positive correlation between SLEDAI-2K and membrane CD137 expression on CD4+ cells, as well as soluble CD137, indicates a possible use as biomarkers for disease activity.
Subject(s)
CD4-Positive T-Lymphocytes , Lupus Erythematosus, Systemic , Humans , Middle Aged , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Lupus Erythematosus, Systemic/metabolism , T-Lymphocytes, Regulatory/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolismABSTRACT
Background: The immune profile of each patient could be considered as a portrait of the fitness of his/her own immune system. The predictive role of the immune profile in immune-related toxicities (irAEs) development and tumour response to treatment was investigated. Methods: A prospective, multicenter study evaluating, through a multiplex assay, the soluble immune profile at the baseline of 53 patients with advanced cancer, treated with immunotherapy as single agent was performed. Four connectivity heat maps and networks were obtained by calculating the Spearman correlation coefficients for each group: responder patients who developed cumulative toxicity (R-T), responders who did not develop cumulative toxicity (R-NT), non-responders who developed cumulative toxicity (NR-T), non-responders who did not develop cumulative toxicity (NR-NT). Results: A statistically significant up-regulation of IL-17A, sCTLA4, sCD80, I-CAM-1, sP-Selectin and sEselectin in NR-T was detected. A clear loss of connectivity of most of the soluble immune checkpoints and cytokines characterized the immune profile of patients with toxicity, while an inversion of the correlation for ICAM-1 and sP-selectin was observed in NR-T. Four connectivity networks were built for each group. The highest number of connections characterized the NR-T. Conclusions: A connectivity network of immune dysregulation was defined for each subgroup of patients, regardless of tumor type. In patients with the worst prognosis (NR-T) the peculiar connectivity model could facilitate their early and timely identification, as well as the design of a personalized treatment approach to improve outcomes or prevent irAEs.
Subject(s)
Neoplasms , Humans , Male , Female , Prospective Studies , Neoplasms/drug therapy , Cytokines , Immunotherapy/adverse effects , PrognosisABSTRACT
BACKGROUND: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) are innovative small target molecules that, in combination with endocrine therapy, have recently been employed in the treatment of patients with HR+/HER2- metastatic breast cancer (mBC). In this prospective study, we investigate the impact of CDK4/6i on the immune profile of patients with HR+/HER2- mBC. METHODS: Immune cell subsets were analysed using flow cytometry of peripheral blood mononuclear cells (PBMCs) isolated from patients with HR+/HER2- mBC, both before and during treatment. Regulatory T cells (Tregs) were identified using the markers CD4, CD25, CTLA4, CD45RA, and intracellular FOXP3. Monocytic and polymorphonuclear myeloid-derived suppressor cells (M-MDSCs and PMN-MDSCs) and other immune populations were analysed using CD45, CD14, CD66b, CD11c, HLA-DR, CD3, CD8, CD28, CD137, PD1, CD45RA, CCR7, and Ki67. FINDINGS: The percentage of circulating Tregs and M/PMN-MDSCs was significantly downregulated from baseline during CDK4/6i-treatment (p<0.0001 and p<0.05, respectively). In particular, the effector Treg subset (CD4+CD25+FOXP3highCD45RA-) was strongly reduced (p<0.0001). The decrease in Treg levels was significantly greater in responder patients than in non-responder patients. Conversely, CDK4/6i treatment was associated with increased levels of CD4+ T cells and anti-tumour CD137+CD8+ T cells (p<0.05). INTERPRETATION: CDK4/6i treatment results in downregulation of Tregs, M-MDSCs, and PMN-MDSCs, thus weakening tumour immunosuppression. This decrease is associated with response to treatment, highlighting the importance of unleashing immunity in cancer treatment efficacy. These results suggest a novel mechanism of immunomodulation in mBC and provide valuable information for the future design of novel treatments combining CDK4/6i with immunotherapy in other cancer settings. FUNDING: Sapienza University of Rome.
Subject(s)
Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Female , Forkhead Transcription Factors , Humans , Immunosuppression Therapy , Leukocytes, Mononuclear , Prospective StudiesABSTRACT
Metastatic uveal melanoma (UM) is a poor prognosis malignancy. Immunotherapy is commonly employed, despite the low activity, considering the lack of other effective systemic treatments. In this study, the prognostic and predictive role of soluble immune checkpoints and inflammatory cytokines/chemokines in 22 metastatic UM patients was evaluated. Baseline levels of these molecules were assessed, as well as their changes during anti-PD-1 therapy. The correlation between soluble immune checkpoints/cytokines/chemokines and survival was analyzed. A comparison between circulating immune profile of metastatic cutaneous melanoma (CM), for which immunotherapy is a mainstay of treatment, and UM during anti-PD-1 therapy was also performed. Three immune molecules resulted significantly higher in metastatic UM patients with survival <6 months versus patients with survival ≥6 months: IL-8, HVEM and IDO activity. Considering these three molecules, we obtained a baseline score able to predict patients' survival. The same three molecules, together with soluble(s) CD137, sGITR and sCD27, resulted significantly lower in patients with survival >30 months. We also observed an increase of sCD137, sCD28, sPD-1, sPD-L2 sLAG3, sCD80 and sTim3 during anti-PD-1 treatment, as well as IDO activity, IP-10 and CCL2. Several of these molecules were significantly higher in UM compared to CM patients during anti-PD-1 therapy. The analysis of circulating immune molecules allows to identify patients with poor prognosis despite immunotherapy and patients with long survival treated with an anti-PD-1 agent. The different serum concentration of these molecules during anti-PD-1 therapy between UM and CM reflects the different efficacy of immune checkpoint inhibitors.
Subject(s)
Melanoma , Skin Neoplasms , Uveal Neoplasms , Cytokines , Humans , Melanoma/drug therapy , Uveal Neoplasms/pathologyABSTRACT
PURPOSE: CD137 molecule is expressed by activated lymphocytes, and in patients with cancer identifies the tumor-reactive T cells. In solid tumors, high levels of circulating CD137+ T cells are associated with the clinical response and the disease-free status. Here, we examined the role of the CD137+ T cells in the improvement of patients' selection for immunotherapy treatment. EXPERIMENTAL DESIGN: Peripheral blood mononuclear cells derived from 109 patients with metastatic cancer (66 patients for the identification cohort and 43 for the validation cohort) were analyzed for the expression of CD3, CD4, CD8, CD137, and PD1 molecules before the beginning of anti-PD1 therapy. Twenty healthy donors were used as control. The soluble form of CD137 (sCD137) was also analyzed. The CD137+ T cell subsets and the sCD137 were correlated with the clinicopathologic characteristics. The distribution of CD137+ T cells was also examined in different tumor settings. RESULTS: The percentage of CD137+ T cells was higher in healthy donors and in those patients with a better clinical status (performance status = 0-1, n°metastasis≤2) and these high levels were ascribed to the CD8+CD137+ T cell population. The high frequency of CD137+ and CD8+CD137+ T cells resulted as a prognostic factor of overall survival (OS) and progression-free survival (PFS), respectively, and were confirmed in the validation cohort. High levels of CD3+CD137+PD1+ lymphocytes were associated with a low number of metastasis and longer survival. Instead, the high concentration of the immunosuppressive sCD137 in the serum is associated with a lower PFS and OS. In tumor bed, patients with a complete response showed a high percentage of CD137+ and CD8+ T cells. CONCLUSIONS: We propose the CD137+ T subset as an immune biomarker to define the wellness status of the immune system for successful anticancer immunotherapy.
Subject(s)
Leukocytes, Mononuclear , Neoplasms , CD8-Positive T-Lymphocytes , Humans , Immunotherapy , Leukocytes, Mononuclear/metabolism , Lymphocyte Count , Neoplasms/therapy , Tumor Necrosis Factor Receptor Superfamily, Member 9ABSTRACT
Background: Despite the efficacy of immunotherapy, only a small percentage of patients achieves a long-term benefit in terms of overall survival. The aim of this study was to define an immune profile predicting the response to immune checkpoint inhibitors (ICIs). Methods: Patients with advanced solid tumors, who underwent ICI treatment were enrolled in this prospective study. Blood samples were collected at the baseline. Thirteen soluble immune checkpoints, 3 soluble adhesion molecules, 5 chemokines and 11 cytokines were analyzed. The results were associated with oncological outcomes. Results: Regardless of tumor type, patients with values of sTIM3, IFNα, IFNγ, IL1ß, IL1α, IL12p70, MIP1ß, IL13, sCD28, sGITR, sPDL1, IL10 and TNFα below the median had longer overall survival (p<0.05). By using cluster analysis and grouping the patients according to the trend of the molecules, two clusters were found. Cluster A had a significantly higher mean progression free survival (Cluster A=11.9 months vs Cluster B=3.5 months, p<0.01), a higher percentage of disease stability (Cluster A=34.5% vs. Cluster B=0%, p<0.05) and a lower percentage of disease progression (Cluster A=55.2% vs. Cluster B = 94.4%, p=0.04). Conclusion: The combined evaluation of soluble molecules, rather than a single circulating factor, may be more suitable to represent the fitness of the immune system status in each patient and could allow to identify two different prognostic and predictive outcome profiles.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Prospective Studies , Immunotherapy/methods , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/pathology , Immune Checkpoint InhibitorsABSTRACT
INTRODUCTION: Only a minority of patients with platinum refractory head and neck squamous cell carcinoma (PR/HNSCC) gain some lasting benefit from immunotherapy. METHODS: The combined role of the comprehensive genomic (through the FoundationOne Cdx test) and immune profiles of 10 PR/HNSCC patients treated with the anti-PD-1 nivolumab was evaluated. The immune profiles were studied both at baseline and at the second cycle of immunotherapy, weighing 20 circulating cytokines/chemokines, adhesion molecules, and 14 soluble immune checkpoints dosed through a multiplex assay. A connectivity map was obtained by calculating the Spearman correlation between the expression profiles of circulating molecules. RESULTS: Early progression occurred in five patients, each of them showing TP53 alteration and three of them showing a mutation/loss/amplification of genes involved in the cyclin-dependent kinase pathway. In addition, ERB2 amplification (1 patient), BRCA1 mutation (1 patient), and NOTCH1 genes alteration (3 patients) occurred. Five patients achieved either stable disease or partial response. Four of them carried mutations in PI3K/AKT/PTEN pathways. In the only two patients, with a long response to immunotherapy, the tumor mutational burden (TMB) was high. Moreover, a distinct signature, in terms of network connectivity of the circulating soluble molecules, characterizing responder and non-responder patients, was evidenced. Moreover, a strong negative and statistically significant (p-value ≤ 0.05) correlation with alive status was evidenced for sE-selectin at T1. CONCLUSIONS: Our results highlighted the complexity and heterogeneity of HNSCCs, even though it was in a small cohort. Molecular and immune approaches, combined in a single profile, could represent a promising strategy, in the context of precision immunotherapy.
ABSTRACT
During the last decades, several improvements in treating gynecological malignancies have been achieved. In particular, target therapies, mostly monoclonal antibodies, have emerged as an attractive option for the treatment of these malignancies. In fact, various molecular-targeted agents have been developed for a variety of malignancies with the objective to interfere with a precise tumor associated receptor, essential for cancer cell survival or proliferation, blocking its function, of the cancer cells. Alternatively, monoclonal antibodies have been developed to block immune suppression or enhance functions of immune effector cells. So far, several monoclonal antibodies have been tested for clinical efficacy for the treatment of gynecological cancers. Antibodies against Vascular Endothelial Growth Factor (VEGF) and Epidermal Growth Factor Receptor (EGFR) have been used in different neoplasms such as ovarian and cervical cancer. Catumazumab, a bivalent antibody against CD3 and EpCAM, is effective in the treatment of neoplastic ascites. Other antibodies are peculiar for specific cancer-associated antigen such as Oregovomab against CA125 or Farletuzumab against the folate receptor. Here we describe the preclinical and clinical experience gained up to now with monoclonal antibodies in tumors of the female genital tract and trace future therapeutic and research venues.
Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Ovarian Neoplasms/drug therapy , Uterine Cervical Neoplasms/drug therapy , Antibodies, Monoclonal/immunology , ErbB Receptors/immunology , ErbB Receptors/metabolism , Female , Humans , Molecular Targeted Therapy , Ovarian Neoplasms/immunology , Receptors, Vascular Endothelial Growth Factor/immunology , Receptors, Vascular Endothelial Growth Factor/metabolism , Uterine Cervical Neoplasms/immunology , Vascular Endothelial Growth Factor A/metabolismABSTRACT
Cabozantinib (XL-184) is a multitarget tyrosine kinase inhibitor (TKI) targeting receptor tyrosine kinases (RTKs) involved in oncogenesis and angiogenesis. It is currently the standard therapy for medullary thyroid cancer (MTC), metastatic renal cell carcinoma (mRCC), and hepatocellular carcinoma (HCC). Combination of Cabozantinib with immunotherapy is now a standard treatment in metastatic renal cancer, and its efficacy is being tested in ongoing clinical trial in prostate cancer patients. Here, we report that Cabozantinib may exert an immunostimulatory role by inducing immunogenic stress of prostate cancer cells and directly modulating dendritic cells (DCs). Cabozantinib treatment arrested the cell cycle and triggered immunogenic cell death (ICD) in prostate cancer cells in vitro. Cabozantinib had a direct effect on DCs by the down-modulation of ß-catenin and change in migratory and costimulatory phenotype of the DCs. These results may suggest possible immunomodulatory effects induced by Cabozantinib that could be exploited to optimize patient-tailored immunotherapeutic treatments.