Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 94(6): 1086-1101, 2023 12.
Article in English | MEDLINE | ID: mdl-37632288

ABSTRACT

OBJECTIVE: Co-occurring anti-tripartite motif-containing protein 9 and 67 autoantibodies (TRIM9/67-IgG) have been reported in only a very few cases of paraneoplastic cerebellar syndrome. The value of these biomarkers and the most sensitive methods of TRIM9/67-IgG detection are not known. METHODS: We performed a retrospective, multicenter study to evaluate the cerebrospinal fluid and serum of candidate TRIM9/67-IgG cases by tissue-based immunofluorescence, peptide phage display immunoprecipitation sequencing, overexpression cell-based assay (CBA), and immunoblot. Cases in which TRIM9/67-IgG was detected by at least 2 assays were considered TRIM9/67-IgG positive. RESULTS: Among these cases (n = 13), CBA was the most sensitive (100%) and revealed that all cases had TRIM9 and TRIM67 autoantibodies. Of TRIM9/67-IgG cases with available clinical history, a subacute cerebellar syndrome was the most common presentation (n = 7/10), followed by encephalitis (n = 3/10). Of these 10 patients, 70% had comorbid cancer (7/10), 85% of whom (n = 6/7) had confirmed metastatic disease. All evaluable cancer biopsies expressed TRIM9 protein (n = 5/5), whose expression was elevated in the cancerous regions of the tissue in 4 of 5 cases. INTERPRETATION: TRIM9/67-IgG is a rare but likely high-risk paraneoplastic biomarker for which CBA appears to be the most sensitive diagnostic assay. ANN NEUROL 2023;94:1086-1101.


Subject(s)
Nerve Tissue Proteins , Paraneoplastic Cerebellar Degeneration , Humans , Retrospective Studies , Nerve Tissue Proteins/metabolism , Biomarkers/cerebrospinal fluid , Autoantibodies/cerebrospinal fluid , Immunoglobulin G
2.
Ann Neurol ; 92(2): 279-291, 2022 08.
Article in English | MEDLINE | ID: mdl-35466441

ABSTRACT

OBJECTIVE: Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD), is a severe pediatric disorder of uncertain etiology resulting in hypothalamic dysfunction and frequent sudden death. Frequent co-occurrence of neuroblastic tumors have fueled suspicion of an autoimmune paraneoplastic neurological syndrome (PNS); however, specific anti-neural autoantibodies, a hallmark of PNS, have not been identified. Our objective is to determine if an autoimmune paraneoplastic etiology underlies ROHHAD. METHODS: Immunoglobulin G (IgG) from pediatric ROHHAD patients (n = 9), non-inflammatory individuals (n = 100) and relevant pediatric controls (n = 25) was screened using a programmable phage display of the human peptidome (PhIP-Seq). Putative ROHHAD-specific autoantibodies were orthogonally validated using radioactive ligand binding and cell-based assays. Expression of autoantibody targets in ROHHAD tumor and healthy brain tissue was assessed with immunohistochemistry and mass spectrometry, respectively. RESULTS: Autoantibodies to ZSCAN1 were detected in ROHHAD patients by PhIP-Seq and orthogonally validated in 7/9 ROHHAD patients and 0/125 controls using radioactive ligand binding and cell-based assays. Expression of ZSCAN1 in ROHHAD tumor and healthy human brain tissue was confirmed. INTERPRETATION: Our results support the notion that tumor-associated ROHHAD syndrome is a pediatric PNS, potentially initiated by an immune response to peripheral neuroblastic tumor. ZSCAN1 autoantibodies may aid in earlier, accurate diagnosis of ROHHAD syndrome, thus providing a means toward early detection and treatment. This work warrants follow-up studies to test sensitivity and specificity of a novel diagnostic test. Last, given the absence of the ZSCAN1 gene in rodents, our study highlights the value of human-based approaches for detecting novel PNS subtypes. ANN NEUROL 2022;92:279-291.


Subject(s)
Autonomic Nervous System Diseases , Endocrine System Diseases , Hypothalamic Diseases , Paraneoplastic Syndromes, Nervous System , Autoantibodies , Child , Humans , Hypothalamic Diseases/genetics , Hypoventilation/genetics , Ligands , Paraneoplastic Syndromes, Nervous System/diagnosis , Syndrome
3.
J Infect Dis ; 225(11): 1909-1914, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34979030

ABSTRACT

The wide spectrum of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of immune responses to different spike protein versions. Here, we compare neutralization of variants of concern, including B.1.617.2 (delta) and B.1.1.529 (omicron), in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing certain spike mutations with the immunizing exposure, and exposure to multiple spike variants increases breadth of variant cross-neutralization. These findings contribute to understanding relationships between exposures and antibody responses and may inform booster vaccination strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
N Engl J Med ; 381(1): 47-54, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31269365

ABSTRACT

A 37-year-old man with a history of seminoma presented with vertigo, ataxia, and diplopia. An autoantibody specific for kelch-like protein 11 (KLHL11) was identified with the use of programmable phage display. Immunoassays were used to identify KLHL11 IgG in 12 other men with similar neurologic features and testicular disease. Immunostaining of the patient's IgG on mouse brain tissue showed sparse but distinctive points of staining in multiple brain regions, with enrichment in perivascular and perimeningeal tissues. The onset of the neurologic syndrome preceded the diagnosis of seminoma in 9 of the 13 patients. An age-adjusted estimate of the prevalence of autoimmune KLHL11 encephalitis in Olmsted County, Minnesota, was 2.79 cases per 100,000 men. (Funded by the Rochester Epidemiology Project and others.).


Subject(s)
Autoantibodies/analysis , Brain/immunology , Carrier Proteins/immunology , Cell Surface Display Techniques , Encephalitis/immunology , Hashimoto Disease/immunology , Paraneoplastic Syndromes, Nervous System/immunology , Seminoma/complications , Testicular Neoplasms/complications , Adult , Aged , Encephalitis/epidemiology , Hashimoto Disease/epidemiology , Humans , Immunoassay , Male , Middle Aged , Minnesota/epidemiology , Prevalence
5.
N Engl J Med ; 380(24): 2327-2340, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31189036

ABSTRACT

BACKGROUND: Metagenomic next-generation sequencing (NGS) of cerebrospinal fluid (CSF) has the potential to identify a broad range of pathogens in a single test. METHODS: In a 1-year, multicenter, prospective study, we investigated the usefulness of metagenomic NGS of CSF for the diagnosis of infectious meningitis and encephalitis in hospitalized patients. All positive tests for pathogens on metagenomic NGS were confirmed by orthogonal laboratory testing. Physician feedback was elicited by teleconferences with a clinical microbial sequencing board and by surveys. Clinical effect was evaluated by retrospective chart review. RESULTS: We enrolled 204 pediatric and adult patients at eight hospitals. Patients were severely ill: 48.5% had been admitted to the intensive care unit, and the 30-day mortality among all study patients was 11.3%. A total of 58 infections of the nervous system were diagnosed in 57 patients (27.9%). Among these 58 infections, metagenomic NGS identified 13 (22%) that were not identified by clinical testing at the source hospital. Among the remaining 45 infections (78%), metagenomic NGS made concurrent diagnoses in 19. Of the 26 infections not identified by metagenomic NGS, 11 were diagnosed by serologic testing only, 7 were diagnosed from tissue samples other than CSF, and 8 were negative on metagenomic NGS owing to low titers of pathogens in CSF. A total of 8 of 13 diagnoses made solely by metagenomic NGS had a likely clinical effect, with 7 of 13 guiding treatment. CONCLUSIONS: Routine microbiologic testing is often insufficient to detect all neuroinvasive pathogens. In this study, metagenomic NGS of CSF obtained from patients with meningitis or encephalitis improved diagnosis of neurologic infections and provided actionable information in some cases. (Funded by the National Institutes of Health and others; PDAID ClinicalTrials.gov number, NCT02910037.).


Subject(s)
Cerebrospinal Fluid/microbiology , Encephalitis/microbiology , Genome, Microbial , Meningitis/microbiology , Metagenomics , Adolescent , Adult , Cerebrospinal Fluid/virology , Child , Child, Preschool , Encephalitis/diagnosis , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Infections/diagnosis , Length of Stay , Male , Meningitis/diagnosis , Meningoencephalitis/diagnosis , Meningoencephalitis/microbiology , Middle Aged , Myelitis/diagnosis , Myelitis/microbiology , Prospective Studies , Sequence Analysis, DNA , Sequence Analysis, RNA , Young Adult
6.
Eur J Neurol ; 28(12): 4261-4266, 2021 12.
Article in English | MEDLINE | ID: mdl-34561925

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to identify the long-term radiological changes, autoantibody specificities, and clinical course in a patient with kelch-like protein 11 (KLHL11)-associated paraneoplastic neurological syndrome (PNS). METHODS: Serial brain magnetic resonance images were retrospectively assessed. To test for KLHL11 autoantibodies, longitudinal cerebrospinal fluid (CSF) and serum samples were screened by Phage-display ImmunoPrecipitation and Sequencing (PhIP-Seq). Immunohistochemistry was also performed to assess for the presence of KLHL11 in the patient's seminoma tissue. RESULTS: A 42-year-old man presented with progressive ataxia and sensorineural hearing loss. Metastatic seminoma was detected 11 months after the onset of the neurological symptoms. Although immunotherapy was partially effective, his cerebellar ataxia gradually worsened over the next 8 years. Brain magnetic resonance imaging revealed progressive brainstem and cerebellar atrophy with a "hot-cross-bun sign", and low-signal intensity on susceptibility-weighted imaging (SWI) in the substantia nigra, red nucleus and dentate nuclei. PhIP-Seq enriched for KLHL11-derived peptides in all samples. Immunohistochemical staining of mouse brain with the patient CSF showed co-localization with a KLHL11 commercial antibody in the medulla and dentate nucleus. Immunohistochemical analysis of seminoma tissue showed anti-KLHL11 antibody-positive particles in cytoplasm. CONCLUSIONS: This study suggests that KLHL11-PNS should be included in the differential diagnosis for patients with brainstem and cerebellar atrophy and signal changes not only on T2-FLAIR but also on SWI, which might otherwise be interpreted as secondary to a neurodegenerative disease such as multiple system atrophy.


Subject(s)
Multiple System Atrophy , Paraneoplastic Syndromes, Nervous System , Animals , Autoantibodies , Humans , Magnetic Resonance Imaging , Mice , Paraneoplastic Syndromes, Nervous System/diagnostic imaging , Retrospective Studies
7.
Ann Neurol ; 82(1): 105-114, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28628941

ABSTRACT

OBJECTIVE: Immunodeficient patients are particularly vulnerable to neuroinvasive infections that can be challenging to diagnose. Metagenomic next generation sequencing can identify unusual or novel microbes and is therefore well suited for investigating the etiology of chronic meningoencephalitis in immunodeficient patients. METHODS: We present the case of a 34-year-old man with X-linked agammaglobulinemia from Australia suffering from 3 years of meningoencephalitis that defied an etiologic diagnosis despite extensive conventional testing, including a brain biopsy. Metagenomic next generation sequencing of his cerebrospinal fluid and brain biopsy tissue was performed to identify a causative pathogen. RESULTS: Sequences aligning to multiple Cache Valley virus genes were identified via metagenomic next generation sequencing. Reverse transcription polymerase chain reaction and immunohistochemistry subsequently confirmed the presence of Cache Valley virus in the brain biopsy tissue. INTERPRETATION: Cache Valley virus, a mosquito-borne orthobunyavirus, has only been identified in 3 immunocompetent North American patients with acute neuroinvasive disease. The reported severity ranges from a self-limiting meningitis to a rapidly fatal meningoencephalitis with multiorgan failure. The virus has never been known to cause a chronic systemic or neurologic infection in humans. Cache Valley virus has also never previously been detected on the Australian continent. Our research subject traveled to North and South Carolina and Michigan in the weeks prior to the onset of his illness. This report demonstrates that metagenomic next generation sequencing allows for unbiased pathogen identification, the early detection of emerging viruses as they spread to new locales, and the discovery of novel disease phenotypes. Ann Neurol 2017;82:105-114.


Subject(s)
Brain/virology , Bunyamwera virus/pathogenicity , Encephalitis, Viral/virology , Meningoencephalitis/virology , Adult , Bunyamwera virus/genetics , Encephalitis, Viral/cerebrospinal fluid , Humans , Male , Meningoencephalitis/cerebrospinal fluid , Metagenomics , Sequence Analysis, DNA
9.
Sci Transl Med ; 16(753): eadl3758, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924428

ABSTRACT

Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.


Subject(s)
Autoantibodies , Vitamin B 12 Deficiency , Vitamin B 12 , Humans , Vitamin B 12 Deficiency/immunology , Vitamin B 12/blood , Autoantibodies/blood , Autoantibodies/immunology , Female , Receptors, Cell Surface/metabolism , Antigens, CD/metabolism , Middle Aged , Autoimmune Diseases/immunology , Autoimmune Diseases/blood , Blood-Brain Barrier/metabolism , Male
10.
Nat Med ; 30(5): 1300-1308, 2024 May.
Article in English | MEDLINE | ID: mdl-38641750

ABSTRACT

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. In this study, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster in approximately 10% of PwMS who share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active preclinical period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes.


Subject(s)
Autoantibodies , Multiple Sclerosis , Neurofilament Proteins , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/blood , Autoantibodies/blood , Autoantibodies/immunology , Neurofilament Proteins/blood , Neurofilament Proteins/immunology , Biomarkers/blood , Cohort Studies , Female , Male , Adult , Middle Aged
11.
Article in English | MEDLINE | ID: mdl-37339889

ABSTRACT

Mutations in the complement factor I (CFI) gene have previously been identified as causes of recurrent CNS inflammation. We present a case of a 26-year-old man with 18 episodes of recurrent meningitis, who had a variant in CFI(c.859G>A,p.Gly287Arg) not previously associated with neurologic manifestations. He achieved remission with canakinumab, a human monoclonal antibody targeted at interleukin-1 beta.


Subject(s)
Complement Factor I , Meningitis, Aseptic , Male , Humans , Adult , Meningitis, Aseptic/drug therapy , Meningitis, Aseptic/complications , Antibodies, Monoclonal , Inflammation/complications , Mutation
12.
Open Forum Infect Dis ; 10(11): ofad515, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37965640

ABSTRACT

Background: Neurological opportunistic infections cause significant morbidity and mortality in people with human immunodeficiency virus (HIV) but are difficult to diagnose. Methods: One hundred forty people with HIV with acute neurological symptoms from Iquitos, Peru, were evaluated for cerebral toxoplasmosis with quantitative polymerase chain reaction (qPCR) of cerebrospinal fluid (CSF) and for cryptococcal meningitis with cryptococcal antigen test (CrAg) in serum or CSF. Differences between groups were assessed with standard statistical methods. A subset of samples was evaluated by metagenomic next-generation sequencing (mNGS) of CSF to compare standard diagnostics and identify additional diagnoses. Results: Twenty-seven participants were diagnosed with cerebral toxoplasmosis by qPCR and 13 with cryptococcal meningitis by CrAg. Compared to participants without cerebral toxoplasmosis, abnormal Glasgow Coma Scale score (P = .05), unilateral focal motor signs (P = .01), positive Babinski reflex (P = .01), and multiple lesions on head computed tomography (CT) (P = .002) were associated with cerebral toxoplasmosis. Photophobia (P = .03) and absence of lesions on head CT (P = .02) were associated with cryptococcal meningitis. mNGS of 42 samples identified 8 cases of cerebral toxoplasmosis, 7 cases of cryptococcal meningitis, 5 possible cases of tuberculous meningitis, and incidental detections of hepatitis B virus (n = 1) and pegivirus (n = 1). mNGS had a positive percentage agreement of 71% and a negative percentage agreement of 91% with qPCR for T gondii. mNGS had a sensitivity of 78% and specificity of 100% for Cryptococcus diagnosis. Conclusions: An infection was diagnosed by any method in only 34% of participants, demonstrating the challenges of diagnosing neurological opportunistic infections in this population and highlighting the need for broader, more sensitive diagnostic tests for central nervous system infections.

13.
medRxiv ; 2023 May 15.
Article in English | MEDLINE | ID: mdl-37205595

ABSTRACT

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. Here, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster of PwMS that share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active prodromal period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid (CSF) and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically- or radiologically-isolated neuroinflammatory syndromes.

15.
Front Neurol ; 13: 1102484, 2022.
Article in English | MEDLINE | ID: mdl-36756346

ABSTRACT

Neuroinvasive infection is the most common cause of meningoencephalitis in people living with human immunodeficiency virus (HIV), but autoimmune etiologies have been reported. We present the case of a 51-year-old man living with HIV infection with steroid-responsive meningoencephalitis whose comprehensive pathogen testing was non-diagnostic. Subsequent tissue-based immunofluorescence with acute-phase cerebrospinal fluid revealed anti-neural antibodies localizing to the axon initial segment (AIS), the node of Ranvier (NoR), and the subpial space. Phage display immunoprecipitation sequencing identified ankyrinG (AnkG) as the leading candidate autoantigen. A synthetic blocking peptide encoding the PhIP-Seq-identified AnkG epitope neutralized CSF IgG binding to the AIS and NoR, thereby confirming a monoepitopic AnkG antibody response. However, subpial immunostaining persisted, indicating the presence of additional autoantibodies. Review of archival tissue-based staining identified candidate AnkG autoantibodies in a 60-year-old woman with metastatic ovarian cancer and seizures that were subsequently validated by cell-based assay. AnkG antibodies were not detected by tissue-based assay and/or PhIP-Seq in control CSF (N = 39), HIV CSF (N = 79), or other suspected and confirmed neuroinflammatory CSF cases (N = 1,236). Therefore, AnkG autoantibodies in CSF are rare but extend the catalog of AIS and NoR autoantibodies associated with neurological autoimmunity.

16.
Front Neurol ; 12: 728700, 2021.
Article in English | MEDLINE | ID: mdl-34744969

ABSTRACT

The development of autoimmune antibody panels has improved the diagnosis of paraneoplastic neurological disorders (PNDs) of the brain and spinal cord. Here, we present a case of a woman with a history of breast cancer who presented with a subacute sensory ataxia that progressed over 18 months. Her examination and diagnostic studies were consistent with a myelopathy. Metabolic, infectious, and autoimmune testing were non-diagnostic. However, she responded to empirical immunosuppression, prompting further workup for an autoimmune etiology. An unbiased autoantibody screen utilizing phage display immunoprecipitation sequencing (PhIP-Seq) identified antibodies to the anti-Yo antigens cerebellar degeneration related protein 2 like (CDR2L) and CDR2, which were subsequently validated by immunoblot and cell-based overexpression assays. Furthermore, CDR2L protein expression was restricted to HER2 expressing tumor cells in the patient's breast tissue. Recent evidence suggests that CDR2L is likely the primary antigen in anti-Yo paraneoplastic cerebellar degeneration, but anti-Yo myelopathy is poorly characterized. By immunostaining, we detected neuronal CDR2L protein expression in the murine and human spinal cord. This case demonstrates the diagnostic utility of unbiased assays in patients with suspected PNDs, supports prior observations that anti-Yo PND can be associated with isolated myelopathy, and implicates CDR2L as a potential antigen in the spinal cord.

17.
medRxiv ; 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34981075

ABSTRACT

The wide spectrum of SARS-CoV-2 variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of the immune response to different spike protein versions. Here, we compare the neutralization of variants of concern, including B.1.617.2 (Delta) and B.1.1.529 (Omicron) in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing certain spike mutations with the immunizing exposure. We also observe that exposure to multiple spike variants increases the breadth of variant cross-neutralization. These findings contribute to understanding relationships between exposures and antibody responses and may inform booster vaccination strategies. SUMMARY: This study characterizes neutralization of eight different SARS-CoV-2 variants, including Delta and Omicron, with respect to nine different prior exposures, including vaccination, booster, and infections with Delta, Epsilon, and others. Different exposures were found to confer substantially differing neutralization specificity.

18.
JAMA Neurol ; 78(12): 1503-1509, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34694339

ABSTRACT

Importance: Neuropsychiatric manifestations of COVID-19 have been reported in the pediatric population. Objective: To determine whether anti-SARS-CoV-2 and autoreactive antibodies are present in the cerebrospinal fluid (CSF) of pediatric patients with COVID-19 and subacute neuropsychiatric dysfunction. Design, Setting, and Participants: This case series includes 3 patients with recent SARS-CoV-2 infection as confirmed by reverse transcriptase-polymerase chain reaction or IgG serology with recent exposure history who were hospitalized at the University of California, San Francisco Benioff Children's Hospital and for whom a neurology consultation was requested over a 5-month period in 2020. During this period, 18 total children were hospitalized and tested positive for acute SARS-CoV-2 infection by reverse transcriptase-polymerase chain reaction or rapid antigen test. Main Outcomes and Measures: Detection and characterization of CSF anti-SARS-CoV-2 IgG and antineural antibodies. Results: Of 3 included teenaged patients, 2 patients had intrathecal anti-SARS-CoV-2 antibodies. CSF IgG from these 2 patients also indicated antineural autoantibodies on anatomic immunostaining. Autoantibodies targeting transcription factor 4 (TCF4) in 1 patient who appeared to have a robust response to immunotherapy were also validated. Conclusions and Relevance: Pediatric patients with COVID-19 and prominent subacute neuropsychiatric symptoms, ranging from severe anxiety to delusional psychosis, may have anti-SARS-CoV-2 and antineural antibodies in their CSF and may respond to immunotherapy.


Subject(s)
Antibodies, Viral/cerebrospinal fluid , Autoantibodies/cerebrospinal fluid , COVID-19/complications , COVID-19/immunology , Mental Disorders/cerebrospinal fluid , Mental Disorders/etiology , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , Adolescent , Animals , Anxiety/etiology , Anxiety/psychology , Autoimmunity , Female , Humans , Male , Marijuana Smoking/immunology , Mice , Movement Disorders/etiology , Neurologic Examination , Transcription Factor 4/immunology
19.
JAMA Neurol ; 78(11): 1355-1366, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34515766

ABSTRACT

Importance: Cerebrospinal fluid (CSF) cytologic testing and flow cytometry are insensitive for diagnosing neoplasms of the central nervous system (CNS). Such clinical phenotypes can mimic infectious and autoimmune causes of meningoencephalitis. Objective: To ascertain whether CSF metagenomic next-generation sequencing (mNGS) can identify aneuploidy, a hallmark of malignant neoplasms, in difficult-to-diagnose cases of CNS malignant neoplasm. Design, Setting, and Participants: Two case-control studies were performed at the University of California, San Francisco (UCSF). The first study used CSF specimens collected at the UCSF Clinical Laboratories between July 1, 2017, and December 31, 2019, and evaluated test performance in specimens from patients with a CNS malignant neoplasm (positive controls) or without (negative controls). The results were compared with those from CSF cytologic testing and/or flow cytometry. The second study evaluated patients who were enrolled in an ongoing prospective study between April 1, 2014, and July 31, 2019, with presentations that were suggestive of neuroinflammatory disease but who were ultimately diagnosed with a CNS malignant neoplasm. Cases of individuals whose tumors could have been detected earlier without additional invasive testing are discussed. Main Outcomes and Measures: The primary outcome measures were the sensitivity and specificity of aneuploidy detection by CSF mNGS. Secondary subset analyses included a comparison of CSF and tumor tissue chromosomal abnormalities and the identification of neuroimaging characteristics that were associated with test performance. Results: Across both studies, 130 participants were included (median [interquartile range] age, 57.5 [43.3-68.0] years; 72 men [55.4%]). The test performance study used 125 residual laboratory CSF specimens from 47 patients with a CNS malignant neoplasm and 56 patients with other neurological diseases. The neuroinflammatory disease study enrolled 12 patients and 17 matched control participants. The sensitivity of the CSF mNGS assay was 75% (95% CI, 63%-85%), and the specificity was 100% (95% CI, 96%-100%). Aneuploidy was detected in 64% (95% CI, 41%-83%) of the patients in the test performance study with nondiagnostic cytologic testing and/or flow cytometry, and in 55% (95% CI, 23%-83%) of patients in the neuroinflammatory disease study who were ultimately diagnosed with a CNS malignant neoplasm. Of the patients in whom aneuploidy was detected, 38 (90.5%) had multiple copy number variations with tumor fractions ranging from 31% to 49%. Conclusions and Relevance: This case-control study showed that CSF mNGS, which has low specimen volume requirements, does not require the preservation of cell integrity, and was orginally developed to diagnose neurologic infections, can also detect genetic evidence of a CNS malignant neoplasm in patients in whom CSF cytologic testing and/or flow cytometry yielded negative results with a low risk of false-positive results.


Subject(s)
Biomarkers, Tumor/cerebrospinal fluid , Central Nervous System Neoplasms/cerebrospinal fluid , Central Nervous System Neoplasms/diagnosis , High-Throughput Nucleotide Sequencing/methods , Adult , Aged , Case-Control Studies , Female , Humans , Male , Metagenomics , Middle Aged , Sensitivity and Specificity , Sequence Analysis, DNA/methods
20.
Article in English | MEDLINE | ID: mdl-32139440

ABSTRACT

OBJECTIVE: In 2016, Catalonia experienced a pediatric brainstem encephalitis outbreak caused by enterovirus A71 (EV-A71). Conventional testing identified EV in the periphery but rarely in CSF. Metagenomic next-generation sequencing (mNGS) and CSF pan-viral serology (VirScan) were deployed to enhance viral detection and characterization. METHODS: RNA was extracted from the CSF (n = 20), plasma (n = 9), stool (n = 15), and nasopharyngeal samples (n = 16) from 10 children with brainstem encephalitis and 10 children with meningitis or encephalitis. Pathogens were identified using mNGS. Available CSF from cases (n = 12) and pediatric other neurologic disease controls (n = 54) were analyzed with VirScan with a subset (n = 9 and n = 50) validated by ELISA. RESULTS: mNGS detected EV in all samples positive by quantitative reverse transcription polymerase chain reaction (qRT-PCR) (n = 25). In qRT-PCR-negative samples (n = 35), mNGS found virus in 23% (n = 8, 3 CSF samples). Overall, mNGS enhanced EV detection from 42% (25/60) to 57% (33/60) (p-value = 0.013). VirScan and ELISA increased detection to 92% (11/12) compared with 46% (4/12) for CSF mNGS and qRT-PCR (p-value = 0.023). Phylogenetic analysis confirmed the EV-A71 strain clustered with a neurovirulent German EV-A71. A single amino acid substitution (S241P) in the EVA71 VP1 protein was exclusive to the CNS in one subject. CONCLUSION: mNGS with VirScan significantly increased the CNS detection of EVs relative to qRT-PCR, and the latter generated an antigenic profile of the acute EV-A71 immune response. Genomic analysis confirmed the close relation of the outbreak EV-A71 and neuroinvasive German EV-A71. A S241P substitution in VP1 was found exclusively in the CSF.


Subject(s)
Brain Stem , Encephalitis, Viral/virology , Enterovirus A, Human/genetics , Enterovirus A, Human/isolation & purification , Enterovirus Infections/virology , Meningitis, Viral/virology , RNA, Viral/metabolism , Child, Preschool , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Phylogeny , RNA, Viral/blood , RNA, Viral/cerebrospinal fluid , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL