ABSTRACT
Clinical manifestations of COVID-19 caused by the new coronavirus SARS-CoV-2 are associated with age1,2. Adults develop respiratory symptoms, which can progress to acute respiratory distress syndrome (ARDS) in the most severe form, while children are largely spared from respiratory illness but can develop a life-threatening multisystem inflammatory syndrome (MIS-C)3-5. Here, we show distinct antibody responses in children and adults after SARS-CoV-2 infection. Adult COVID-19 cohorts had anti-spike (S) IgG, IgM and IgA antibodies, as well as anti-nucleocapsid (N) IgG antibody, while children with and without MIS-C had reduced breadth of anti-SARS-CoV-2-specific antibodies, predominantly generating IgG antibodies specific for the S protein but not the N protein. Moreover, children with and without MIS-C had reduced neutralizing activity as compared to both adult COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children independent of whether they develop MIS-C, with implications for developing age-targeted strategies for testing and protecting the population.
Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , COVID-19/virology , Child , Child, Preschool , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/physiology , Young AdultABSTRACT
BACKGROUND: Failure of humoral tolerance to red blood cell (RBC) antigens may lead to autoimmune hemolytic anemia (AIHA), a severe and sometimes fatal disease. Previous studies have shown that although tolerance is robust in HOD mice, autoantibodies are generated upon adoptive transfer of OTII CD4+ T cells, which are specific for an epitope contained within the HOD antigen. These data imply that antigen-presenting cells (APCs) are presenting RBC-derived autoantigen(s) and are capable of driving T-cell activation. Given that multiple APCs participate in erythrophagocytosis, we used a transgenic approach to determine which cellular subsets were required for autoantigen presentation and subsequent autoreactive T-cell activation. STUDY DESIGN AND METHODS: HOD mice, which express an RBC-specific antigen consisting of hen egg lysozyme, ovalbumin, and human blood group molecule Duffy, were bred with IAbfl/fl and Cre-expressing transgenic animals to generate mice that lack I-Ab expression on particular cell subsets. OTII CD4+ T cell proliferation was assessed in vivo in HOD+ I-Abfl/fl xCre+ mice and in vitro upon coculture with sorted APCs. RESULTS: Analysis of HOD+ I-Abfl/fl xCre+ mice demonstrated that splenic conventional dendritic cells (DCs), but not macrophages or monocytes, were required for autoantigen presentation to OTII CD4+ T cells. Subsequent in vitro coculture experiments revealed that both CD8+ and CD8- DC subsets participate in erythrophagocytosis, present RBC-derived autoantigen and stimulate autoreactive T-cell proliferation. CONCLUSION: These data suggest that if erythrocyte T-cell tolerance fails, DCs are capable of initiating autoimmune responses. As such, targeting DCs may be a fruitful strategy for AIHA therapies.
Subject(s)
Autoantigens/immunology , Dendritic Cells/immunology , Erythrocytes/immunology , Spleen/cytology , Anemia, Hemolytic, Autoimmune/etiology , Anemia, Hemolytic, Autoimmune/immunology , Anemia, Hemolytic, Autoimmune/mortality , Animals , Autoantibodies , Autoimmunity , CD4-Positive T-Lymphocytes/metabolism , Erythrocytes/metabolism , Female , Homeodomain Proteins/metabolism , Humans , Immune Tolerance , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL/immunology , Monocytes/immunologyABSTRACT
Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increase RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.
ABSTRACT
Passive immunization with anti-D can prevent maternal alloimmunization to RhD thereby preventing hemolytic disease of the fetus and newborn. Unexpectedly, anti-D fails in some cases and some monoclonal anti-D preparations paradoxically enhances alloimmunization. The underlying mechanisms modulating humoral alloimmunization by anti-D are unknown. We previously reported that IgG antibody subclasses differentially regulate alloimmunity in response to red blood cell (RBC) transfusions in a mouse model; in particular, IgG2c significantly enhanced RBC alloantibody responses. Initial mechanistic studies revealed that IgG2c:RBC immune complexes were preferentially consumed by the splenic dendritic cell (DC) subsets that play a role in RBC alloimmunization. The deletion of activating Fc-gamma receptors (FcγRs) (i.e., FcγRI, FcγRIII, and FcγRIV) on DCs abrogated IgG2c-mediated enhanced alloimmunization. Because DCs express high levels of FcγRIV, which has high affinity for the IgG2c subclass, we hypothesized that FcγRIV was required for enhanced alloimmunization. To test this hypothesis, knockout mice and blocking antibodies were used to manipulate FcγR expression. The data presented herein demonstrate that FcγRIV, but not FcγRI or FcγRIII, is required for IgG2c-mediated enhancement of RBC alloantibody production. Additionally, FcγRI is alone sufficient for IgG2c-mediated RBC clearance but not for increased alloimmunization, demonstrating that RBC clearance can occur without inducing alloimmunization. Together, these data, combined with prior observations, support the hypothesis that passive immunization with an RBC-specific IgG2c antibody increases RBC alloantibody production through FcγRIV ligation on splenic conventional DCs (cDCs). This raises the question of whether standardizing antibody subclasses in immunoprophylaxis preparations is desirable and suggests which subclasses may be optimal for generating monoclonal anti-D therapeutics.
Subject(s)
Anemia, Hemolytic, Autoimmune , Antigen-Antibody Complex , Animals , Antibodies, Blocking , Immunoglobulin G , Isoantibodies , Mice , Mice, KnockoutABSTRACT
The data presented in this article are associated with the research article entitled "Heme-Nitrosylated Hemoglobin and Oxidative Stress in Women Consuming Combined Contraceptives. Clinical Application of the EPR Spectroscopy" (Lobysheva et al., 2017 [1]), and describe the characteristics of redox status in blood, as well as biochemical and clinical parameters of young female subjects consuming (or not) contraceptive pills (CP). Erythrocyte concentration of reduced thiols reflecting erythrocyte redox capacity was measured before and after sample deproteinization by electron paramagnetic resonance spectroscopy (EPR) using a nitroxide biradical spin probe specifically interacting with reduced thiols; additional data were obtained by a colorimetric method using Ellman׳s reagents in the same samples. The products of nitric oxide oxidation, nitrite and total NOx (in presence of nitrate reductase) were measured in the plasma of study subjects by a colorimetric assay based on the detection of red-violet colored azo dye after reaction of nitrite with the Griess reagent. Biochemical and clinical parameters reflective of cardiovascular risk factors (diastolic blood pressure, C-reactive protein, triglycerides and homocysteine concentrations in venous blood) were compared in subgroups of consumers of CP containing ethinyl estradiol and different types of synthetic progestogens. Parameters reflective of the integrity of the vasculature, - erythrocyte concentration of heme-nitrosylated hemoglobin (5-coordinate α-heme-FeII-NO, HbNO) measured directly by the EPR subtraction method; index of reactive hyperemia response (FRHI) measured by digital pulse tonometry using EndoPAT; oxidative vascular stress measured as total plasma peroxide concentration were compared in subgroups of young women taking CP containing ethinyl estradiol at different concentrations and for various durations.