ABSTRACT
BACKGROUND: Ambient air pollution might serve as a prognostic factor for ovarian cancer (OC) survival, yet the relationships between plant-based diet indices (PDIs) and OC survival remain unclear. We aimed to investigate the associations of comprehensive air pollution and PDIs with OC survival and explored the effects of air pollution-diet interactions. METHODS: The present study encompassed 658 patients diagnosed with OC. The overall plant-based diet index (PDI), the healthful PDI (hPDI), and the unhealthful PDI (uPDI) were evaluated by a self-reported validated food frequency questionnaire. In addition, an air pollution score (APS) was formulated by summing the concentrations of particulate matter with a diameter of 2.5 microns or less, ozone, and nitrogen dioxide. Cox proportional hazard models were applied to calculate hazard ratios (HRs) and 95â¯% confidence intervals (CIs). The potential interactions of APS with PDIs in relation to overall survival (OS) were assessed on both multiplicative and additive scales. RESULTS: Throughout a median follow-up of 37.60 (interquartile: 24.77-50.70) months, 123 deaths were confirmed. Comparing to the lowest tertiles, highest uPDI was associated with lower OS of OC (HR = 2.06, 95â¯% CI = 1.30, 3.28; P-trend < 0.01), whereas no significant associations were found between either overall PDI or hPDI and OC survival. Higher APS (HR for per interquartile range = 1.27, 95â¯% CI = 1.01, 1.60) was significantly associated with worse OC survival, and the association was exacerbated by adherence to uPDI. Notably, an additive interaction was identified between combined air pollution and uPDI (P < 0.005 for high APS and high uPDI). We also found that adherence to overall PDI aggravated associations of air pollution with OC survival (P-interaction = 0.006). CONCLUSIONS: Joint exposure to various ambient air pollutants was significantly associated with lower survival among patients with OC, particularly for those who predominantly consumed unhealthy plant-based foods.
Subject(s)
Air Pollutants , Air Pollution , Ovarian Neoplasms , Particulate Matter , Female , Humans , Middle Aged , Prospective Studies , Ovarian Neoplasms/mortality , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , Particulate Matter/analysis , Air Pollutants/analysis , Air Pollutants/adverse effects , Adult , Diet, Vegetarian , Proportional Hazards Models , Ozone/analysis , Aged , Nitrogen Dioxide/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/adverse effects , Cohort Studies , Diet, Plant-BasedABSTRACT
Recent evidence advises particles with a diameter of 2.5 µm or less (PM2.5) might be a prognostic factor for ovarian cancer (OC) survival. The oxidative balance score (OBS) incorporates diet-lifestyle factors to estimate individuals' anti-oxidant exposure status which may be relevant to cancer prognosis. We aimed to investigate the roles of PM2.5, and OBS and their interaction in OC prognosis. 663 patients with OC were enrolled in the current study. Satellite-derived annual average exposures to PM2.5 based on patients' residential locations. The OBS was calculated based on 16 different diet-lifestyle components derived using an acknowledged self-reported questionnaire. The Cox regression model was performed to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for overall survival (OS). We also assessed the effect of modification between PM2.5 and OS by OBS via interaction terms. During a median follow-up of 37.57 (interquartile:35.27-40.17) months, 123 patients died. Compared to low-concentration PM2.5 exposure, high PM2.5 during 1 year before diagnosis was associated with worse OC survival (HR= 1.19, 95% CI = 1.01-1.42). We observed an improved OS with the highest compared with the lowest OBS (HR = 0.46, 95% CI = 0.27-0.79, P for trend < 0.05). Notably, we also found an additive interaction between low OBS and high exposure to PM2.5, with the corresponding associations of PM2.5 being more pronounced among participants with lower OBS (HR = 1.42, 95% CI = 1.09-1.86). PM2.5 may blunt OC survival, but high OBS represented an antioxidative performance that could alleviate the adverse association of PM2.5 and OS.
Subject(s)
Air Pollutants , Air Pollution , Ovarian Neoplasms , Humans , Female , Particulate Matter , Prospective Studies , Antioxidants , Oxidative Stress , Environmental ExposureABSTRACT
Rapid detection of pathogenic microorganisms is key to the epidemiologic identification, prevention and control of disease in the field of public health. PCR-based pathogen detection methods have been widely used because they overcome the time-consuming issues that traditional culture-based methods required including the limited window required by immunological detection. However, the requirement on precision temperature-controlled thermal cyclers severely limits their use in resource-limited areas. The detection methods of pathogenic microorganisms based on isothermal amplification of nucleic acids are free of dependence on high-precision temperature control equipment, but requirements for nucleic acids extraction, amplification and detection must be defined. In recent years, a number of alternative methods for pathogenic microorganism detection have been developed by combining microfluidic technology with nucleic acid isothermal amplification technology. By designing the chip structures, optimizing the injection modes, and utilizing multiple detection and quantitative methods, the integration of pathogen nucleic acid extraction, amplification and detection is achieved. The method provides advantages of less instrument dependence, decreased operator requirements, smaller sample size, and higher automation which are suitable for the rapid detection of pathogenic microorganisms in various environments. In this review, we summarize several microfluidic detection methods based on nucleic acid isothermal amplification for pathogens including amplification principles, injection methods and detection methods. These methods provide more capability for the rapid screening of pathogenic microorganisms which enhances the management of infectious diseases in the field of public health.
Subject(s)
Bacteria/isolation & purification , Lab-On-A-Chip Devices , Nucleic Acid Amplification Techniques , Nucleic Acids/analysis , Viruses/isolation & purification , Bacteria/pathogenicity , Polymerase Chain Reaction , Viruses/pathogenicityABSTRACT
The adverse reaction to irinotecan is related to the single nucleotide polymorphism (SNP) of UGT1A1*6 genotype. The current SNP detection methods have various disadvantages, including time-consuming procedures, high- risk cross-contamination, and cumbersome operation. Hence, it is necessary to establish a new method suitable for clinical application, which is easy and simple to detect SNP with minimal risk for cross-contamination. In this study, a cascade invader assay-based real-time PCR, for UGT1A1*6 genotyping has been established by optimizing reaction conditions with DNA samples of three genotypes. The sensitivity and accuracy of the method were evaluated with DNAs derived from oral swab samples. The results showed that the method could detect the UGT1A1*6 genotypes from the oral swab samples with a detection limit of 6 ng genomic DNA with 100% accuracy. Due to its convenient and non-invasive sampling, single close-tube operation, and minimal risk for cross-contamination, the method has the potential in clinical application for individualized detection of drug-related UGT1A1*6 polymorphism and reaction to irinotecan.
Subject(s)
Glucuronosyltransferase/genetics , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction/methods , Saliva/chemistry , Genotype , HumansABSTRACT
Loop-mediated isothermal amplification (LAMP) has been widely applied in nucleic acid diagnostics due to its high sensitivity and specificity, high speed and low requirement of equipment. In order to fully leverage these merits, achieve high efficiency and reliability in diagnostics, and expand the applicable fields while keeping low reagent cost, multiplex LAMP technology has been extensively explored in recent years. Common methods for LAMP products detection are mostly based on the double-stranded DNA amplicons or byproducts from the polymerization reaction, so they can only identify the occurrence of amplification reaction but not the origins or specificity of the products. To achieve specific LAMP products detection, researchers developed various multiplex methods by improving the conventional LAMP technology or coupling LAMP with other assays. However, the interference and/or the different amplification efficiencies among different primer sets often lead to biased amplification and thus limited multiplexing level. We here defined these methods as narrow-sensed multiplex LAMP. The research on miniaturized amplification technology which is booming in recent years has given rise to the novel general-sensed multiplex LAMP technology that breaks this limitation by its capability to perform highly parallel and miniaturized simplex reactions in independent compartments. Methods of this type have additional benefits such as lower reagent cost, higher level of automation, lower risk of cross-contamination and better suitability for on-site detection of multiple targets. In this review, we summarize the recent research progress in multiplex LAMP technology from the following aspects: the principle and design of narrow-sensed LAMP and its amplification optimization, the general-sensed LAMP, and the various applications of all multiplex LAMP technologies in diagnostics.
Subject(s)
Nucleic Acid Amplification Techniques/methods , HumansABSTRACT
Meta-analyses have reported conflicting data on the whole blood cell count (WBCC) derived indexes (neutrophil-to-lymphocyte ratio [NLR], platelet-to-lymphocyte ratio [PLR], and lymphocyte-to-monocyte ratio [LMR]) and cancer prognosis. However, the strength and quality of this evidence has not been quantified in aggregate. To grade the evidence from published meta-analyses of cohort studies that investigated the associations between NLR, PLR, and LMR and cancer prognosis. A total of 694 associations from 224 articles were included. And 219 (97.8%) articles rated as moderate-to-high quality according to AMSTAR. There were four associations supported by convincing evidence. Meanwhile, 165 and 164 associations were supported by highly suggestive and suggestive evidence, respectively. In this umbrella review, we summarized the existing evidence on the WBCC-derived indexes and cancer prognosis. Due to the direction of effect sizes is not completely consistent between studies, further research is needed to assess causality and provide firm evidence.
ABSTRACT
Background: Benefits of Intermittent fasting (IF) on health-related outcomes have been found in a range of randomised controlled trials (RCTs). Our umbrella review aimed to systematically analyze and synthesize the available causal evidence on IF and its impact on specific health-related outcomes while evaluating its evidence quality. Methods: We comprehensively searched the PubMed, Embase, Web of Science, and Cochrane databases (from inception up to 8 January 2024) to identify related systematic reviews and meta-analyses of RCTs investigating the association between IF and human health outcomes. We recalculated the effect sizes for each meta-analysis as mean difference (MD) or standardized mean difference (SMD) with corresponding 95% confidence intervals (CIs). Subgroup analyses were performed for populations based on three specific status: diabetes, overweight or obesity, and metabolic syndrome. The quality of systematic reviews was evaluated using A Measurement Tool to Assess Systematic Reviews (AMSTAR), and the certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) system. This study is registered with PROSPERO (CRD42023382004). Findings: A total of 351 associations from 23 meta-analyses with 34 health outcomes were included in the study. A wide range of outcomes were investigated, including anthropometric measures (n = 155), lipid profiles (n = 83), glycemic profiles (n = 57), circulatory system index (n = 41), appetite (n = 9), and others (n = 6). Twenty-one (91%) meta-analyses with 346 associations were rated as high confidence according to the AMSTAR criteria. The summary effects estimates were significant at p < 0.05 in 103 associations, of which 10 (10%) were supported by high certainty of evidence according to GRADE. Specifically, compared with non-intervention diet in adults with overweight or obesity, IF reduced waist circumference (WC) (MD = -1.02 cm; 95% CI: -1.99 to -0.06; p = 0.038), fat mass (MD = -0.72 kg; 95% CI: -1.32 to -0.12; p = 0.019), fasting insulin (SMD = -0.21; 95% CI: -0.40 to -0.02; p = 0.030), low-density lipoprotein cholesterol (LDL-C) (SMD = -0.20; 95% CI: -0.38 to -0.02; p = 0.027), total cholesterol (TC) (SMD = -0.29; 95% CI: -0.48 to -0.10; p = 0.003), and triacylglycerols (TG) (SMD = -0.23; 95% CI: -0.39 to -0.06; p = 0.007), but increased fat free mass (FFM) (MD = 0.98 kg; 95% CI: 0.18-1.78; p = 0.016). Of note, compared with the non-intervention diet, modified alternate-day fasting (MADF) reduced fat mass (MD = -0.70 kg; 95% CI: -1.38 to -0.02; p = 0.044). In people with overweight or obesity, and type 2 diabetes, IF increases high-density lipoprotein cholesterol (HDL-C) levels compared to continuous energy restriction (CER) (MD = 0.03 mmol/L; 95% CI: 0.01-0.05; p = 0.010). However, IF was less effective at reducing systolic blood pressure (SBP) than a CER diet in adults with overweight or obesity (SMD = 0.21; 95% CI: 0.05-0.36; p = 0.008). Interpretation: Our findings suggest that IF may have beneficial effects on a range of health outcomes for adults with overweight or obesity, compared to CER or non-intervention diet. Specifically, IF may decreased WC, fat mass, LDL-C, TG, TC, fasting insulin, and SBP, while increasing HDL-C and FFM. Notably, it is worth noting that the SBP lowering effect of IF appears to be weaker than that of CER. Funding: This work was supported by the National Key Research and Development Program of China (Q-JW), the Natural Science Foundation of China (Q-JW and T-TG), Outstanding Scientific Fund of Shengjing Hospital of China Medical University (Q-JW), and 345 Talent Project of Shengjing Hospital of China Medical University (T-TG).
ABSTRACT
Background: The nutrients-rich food (NRF) index provides a score of diet quality. Although high diet quality is associated with survival of ovarian cancer (OC), the associations between NRF index scores and OC survival remain unevaluated. Methods: The prospective cohort study enrolled 703 women with newly diagnosed epithelial OC to assess the correlations between NRF index scores and overall survival (OS) in OC patients. Dietary consumption was evaluated through a food frequency questionnaire and diet quality was calculated based on NRF index scores, including three limited nutrients and six (NRF6.3), nine (NRF9.3), or eleven (NRF11.3) benefit nutrients. All-cause deaths were ascertained through medical records combined with active follow-up. Immunohistochemistry (IHC) analyses were conducted to evaluate the expression of IHC indicators (including Estrogen Receptor, Progesterone Receptor, p53, Vimentin, and Wilms' tumor 1), which were identified by two independent pathologists. The Cox proportional hazards regression models were applied for estimating the hazard ratios (HRs) and 95% confidence intervals (CIs). Moreover, we performed the penalized cubic splines model to assess the curvilinear associations of NRF index scores with OC survival. Results: During the median follow-up of 37.17 (interquartile: 24.73-50.17) months, 130 deaths were documented. Compared to the lowest tertiles, the highest tertile of index scores [NRF9.3 (HR = 0.63, 95% CI = 0.41-0.95), NRF6.3 (HR = 0.59, 95% CI = 0.39-0.89), and NRF11.3 (HR = 0.57, 95% CI = 0.38-0.87)] were correlated to better OS, showing an obvious linear trend (all p trend < 0.05). Interestingly, the curvilinear association between the NRF6.3 index score and OC survival was also observed (p non-linear < 0.05). Subgroup analyses, stratified by clinical, demographic, and IHC features, showed similar risk associations as the unstratified results. Furthermore, there were significant multiplicative interactions between NRF index scores and Progestogen Receptors as well as Wilms' tumor 1 expressions (all p interaction < 0.05). Conclusions: Higher NRF index scores were associated with an improved OS in OC patients.
Subject(s)
Diet , Ovarian Neoplasms , Female , Humans , Follow-Up Studies , Nutrients , Prospective StudiesABSTRACT
Background: Epidemiological evidence regarding the relationship between dietary antioxidant vitamin intake and ovarian cancer (OC) survival is not clear. Herein, we aimed to first evaluate this topic in a prospective cohort study in China. Methods: The present study included participants from the Ovarian Cancer Follow-Up Study, which was a hospital-based prospective cohort study including OC patients who were aged 18 to 79 years during 2015-2020. The information on the intake of antioxidant vitamins, consisting of vitamin A, retinol, α-carotene, ß-carotene, vitamin C, and vitamin E, and other diet information was obtained through a 111-item food frequency questionnaire. Deaths were recorded until March 31, 2021. Hazard ratios (HRs) and 95% confidence intervals (CIs) for overall survival were evaluated using Cox proportional hazards models. Results: There were 130 (18.49%) deaths among 703 OC patients during a median 37.19 months follow-up. In the multivariable-adjusted model, the highest tertile of dietary vitamin C (HR = 0.43, 95% CI = 0.25-0.75, P for trend <0.05) and ß-carotene intake (HR = 0.52, 95% CI = 0.31-0.87, P for trend <0.05) was inversely associated with the overall survival of OC when compared with the lowest tertile group. Retinol, vitamin A, vitamin E, and α-carotene consumption showed no association with OC survival. Of note is that the multiplicative interaction was identified between vitamin C intake and residual lesions in OC survival (P for interaction <0.05). Conclusion: Our findings indicate that pre-diagnostic higher vitamin C and ß-carotene intake was associated with improved OC survival.
Subject(s)
Antioxidants , Ovarian Neoplasms , Humans , Female , Vitamins , Vitamin A , beta Carotene , Follow-Up Studies , Prospective Studies , Diet , Vitamin E , Ascorbic Acid , Risk FactorsABSTRACT
BACKGROUND: Emerging evidence supports shifting the focus from the quantity of macronutrients to quality to obtain greater benefits for the prognosis of ovarian cancer (OC). Additionally, despite the high relevance between macronutrient quality and quantity, the interaction of these parameters on OC survival remains unknown. OBJECTIVE: A multidimensional macronutrient quality index (MQI) was applied to investigate the association between overall macronutrient quality and the survival of patients with OC. METHODS: A prospective cohort study was conducted with 701 females diagnosed with OC who were enrolled from 2015 to 2020. Dietary intake information was obtained from a validated food frequency questionnaire. The MQI was calculated based on 3 quality indices: carbohydrate quality index (CQI), fat quality index (FQI), and protein quality index (PQI). Cox proportional hazards regression was conducted to calculate HRs and 95% CIs. Furthermore, we evaluated whether energy intake status (total energy intake and energy balance) modified the association between MQI and OC survival. RESULTS: During a median follow-up period of 38 (interquartile: 35-40) mo, 130 deaths occurred. The prediagnosis high MQI scores were associated with substantially improved survival among females with OC (HRtertile 3 vs. tertile 1 = 0.50, 95% CI: 0.33, 0.77). For sub-indices of the MQI, higher CQI (HR = 0.60, 95% CI: 0.36, 0.99), higher FQI (HR = 0.55, 95% CI: 0.34, 0.87), and higher PQI (HR = 0.58, 95% CI: 0.35, 0.94) scores were all associated with better survival. Notably, significant interactions were observed for the MQI score with total energy intake and energy balance as well as the quantity and quality of carbohydrates on survival. CONCLUSIONS: Intake of high-quality macronutrients before diagnosis was associated with improved survival among females with OC, especially for those with energy imbalance.
Subject(s)
Dietary Carbohydrates , Ovarian Neoplasms , Humans , Female , Prospective Studies , Risk Factors , Dietary Fats , Energy Intake , Nutrients , DietABSTRACT
BACKGROUND: Evidence of the association between particles with a diameter of 2.5 µm or less (PM2.5) in long term and ovarian cancer (OC) mortality is limited. METHODS: This prospective cohort study analyzed data collected between 2015 and 2020 from 610 newly diagnosed OC patients, aged 18-79 years. The residential average PM2.5 concentrations 10 years before the date of OC diagnosis were assessed by random forest models at a 1 km × 1 km resolution. Cox proportional hazard models fully adjusted for the covariates (including age at diagnosis, education, physical activity, kitchen ventilation, FIGO stage, and comorbidities) and distributed lag non-linear models were used to estimate the hazard ratios (HRs) and 95 % confidence intervals (CIs) of PM2.5 and all-cause mortality of OC. RESULTS: During a median follow-up of 37.6 months (interquartile: 24.8-50.5 months), 118 (19.34 %) deaths were confirmed among 610 OC patients. One-year PM2.5 exposure levels before OC diagnosis was significantly associated with an increase in all-cause mortality among OC patients (single-pollutant model: HR = 1.22, 95 % CI: 1.02-1.46; multi-pollutant models: HR = 1.38, 95 % CI: 1.10-1.72). Furthermore, during 1 to 10 years prior to diagnosis, the lag-specific effect of long-term PM2.5 exposure on the all-cause mortality of OC had a risk increase for lag 1-6 years, and the exposure-response relationship was linear. Of note, significant interactions between several immunological indicators as well as solid fuel use for cooking and ambient PM2.5 concentrations were observed. CONCLUSION: Higher ambient PM2.5 concentrations were associated with an increased risk of all-cause mortality among OC patients, and there was a lag effect in long-term PM2.5 exposure.
Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Ovarian Neoplasms , Humans , Female , Particulate Matter/adverse effects , Air Pollutants/analysis , Prospective Studies , Environmental Exposure/adverse effectsABSTRACT
Background: Phytosterol is a bioactive compound existing in all plant foods, which might have anticancer properties. The aim of this study was to first assess the impact of the pre-diagnosis phytosterol intake on overall survival (OS) of patients with ovarian cancer (OC). Materials and methods: This ambispective cohort study recruited 703 newly diagnosed OC patients to investigate the aforementioned associations. Dietary intake was assessed using a validated 111-item food frequency questionnaire. Deaths were ascertained until March 31, 2021, through active follow-up and medical records. Cox proportional hazards regression models were applied to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs). Results: During the median follow-up of 37.17 months, 130 deaths occurred. The median age at diagnosis of 703 OC patients was 53.00 (interquartile: 48.00-60.00) years. Of these, almost half patients (48.08%) were diagnosed in advanced International Federation of Gynecology and Obstetrics (FIGO) stage (III-IV). Additionally, more than half patients were serous carcinoma (68.14%), poorly differentiated (85.21%), and no residual lesions (78.66%). Patients consumed the highest tertile of dietary campesterol (HR = 0.54, 95% CI = 0.31-0.94, P trend < 0.05), stigmasterol (HR = 0.60, 95% CI = 0.37-0.98), and ß-sitosterol (HR = 0.63, 95% CI = 0.40-0.99) were significantly associated with better OS compared with those with the lowest tertile of intake. The curvilinear associations were observed between total phytosterols and ß-sitosterol intake and OC survival (P non-linear < 0.05). Significant associations were generally consistent across different subgroups stratified by demographical, clinical, and immunohistochemical characteristics. Moreover, there were significant interactions between phytosterol intake and age at diagnosis, body mass index, as well as expressions of Wilms' tumor-1 and Progestogen Receptor (all P interaction < 0.05). Conclusion: Pre-diagnosis higher campesterol, stigmasterol, and ß-sitosterol intake were associated with better survival among OC patients.
ABSTRACT
To avoid sequencing error resulting from use of apyrase in conventional 4- enzyme pyrosequencing system, a non-apyrase 3-enzyme pyrosequencing system with a better performance of quantitative analysis was established. The method is to immobilize biotinylated DNA template, ATP sulfurylase and luciferase on streptavidin-coated magnetic beads for pyrosequencing. After pyrosequencing, ATP produced from the pyrosequencing reaction and excess dNTPs were removed by magnetic separation technique; another dNTP was then dispensed for sequencing reaction, and the components interfering with the next circle of pyrosequencing reaction were removed by the same way, achieving the circular sequencing. This new system can accurately measure base sequences of a target DNA template, and also can quantitatively determine the relative ratio of two alleles. The allele ratios in two SNPs (rs1042917 and rs4818219) having a higher heterozygote rate on chromosome 21 were successfully detected for 16 normal samples and 8 clinical samples from Down's syndrome patients. The results can accurately demonstrate whether or not the target sample has equal copies of chromosome 21 from mother and father. This paper established a non-apyrase 3-enzyme pyrosequencing method, which owns a good perform-ance of quantitative analysis. The method is especially suitable to allelic quantification of an SNP, enabling the rapid diagnosis of Down's syndrome by analyzing allele ratio of SNPs on chromosome 21.
Subject(s)
DNA/genetics , Down Syndrome/diagnosis , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Alleles , Apyrase/metabolism , Chromosomes, Human, Pair 21/genetics , DNA/chemistry , DNA/metabolism , Down Syndrome/genetics , Gene Frequency , Humans , Luciferases/metabolism , Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity , Sulfate Adenylyltransferase/metabolismABSTRACT
OBJECTIVE: To establish a method to detect Down's syndrome through quantitative pyrosequencing of the heterozygous single nucleotide polymorphisms (SNPs) on the chromosome 21. METHODS: An improved allele-specific-amplification was used to screen heterozygous SNPs on the chromosome 21 from 84 normal samples. Pyrosequencing was used to quantitatively determine the ratio between the two alleles of a heterozygote, and the diagnosis of Down's syndrome was thus carried out based on the ratio. RESULTS: By genotyping 84 genomic DNA samples from normal Chinese population, 6 SNPs with a relatively high level of heterozygosity were screened out. Heterozygote coverage of 92.9% was achieved by using a panel of 6 SNPs on the chromosome 21. Ten clinical samples from Down's syndrome patients were quantitatively determined by pyrosequencing, and 9 samples were accurately diagnosed by comparing the ratio of the two alleles. The pyrosequencing results showed that the ratio of the two alleles were 2:1 or 1:2 for the Down's syndrome patients. CONCLUSION: The method has the advantage of a low cost, simple process, and time-saving operation and could be potentially applicable to the rapid diagnosis of Down's syndrome.
Subject(s)
Chromosomes, Human, Pair 21 , Down Syndrome/diagnosis , Polymorphism, Single Nucleotide/genetics , Prenatal Diagnosis/methods , Alleles , Asian People/genetics , Cloning, Molecular , DNA/analysis , Down Syndrome/genetics , Female , Genetic Testing , Humans , Karyotyping/methods , Pregnancy , Prenatal Diagnosis/economicsABSTRACT
A DNA logic sensor was constructed for gene mutation analysis based on a novel signal amplification cascade by controllably extending a hairpin-structured flap to bridge two invasive reactions. The detection limit was as low as 0.07 fM, and the analytical specificity is high enough to unambiguously pick up 0.02% mutants from a large amount of wild-type DNA. Gene mutations related to the personalized medicine of gefitinib, a typical tyrosine kinase inhibitor, were analyzed by the DNA logic sensor with only a 15 minute response time. Successful assay of tissue samples and cell-free plasma DNA indicates that the new concept we proposed here could benefit clinicians for straightforward prescription of a mutation-targeted drug.
ABSTRACT
ATP sulfurylase (ATPS,EC 2.7.7.4) reversibly catalyzes the reaction between ATP and sulfate to produce APS and pyrophosphate (PPi), and has been used in pyrosequencing. The gene coding ATP sulfurylase was amplified from the genomic DNA of Saccharomyces cerevisias (CICC 1202), and cloned into prokaryotic expression plasmid pET28a( + ) to provide a recombinant expression plasmid pET28a( + )-ATPS. Upon IPTG induction, ATP sulfurylase was produced by E. coli BL21 (DE3) harboring the recombinant expression plasmid pET28a( + )-ATPS. The relative molecular weight of recombinant ATP sulfurylase with His tag was about 60 kD. The recombinant ATP sulfurylase with electrophoretic pure grade was obtained only by two purification steps: His * Bind Resin affinity chromatography and ultrafiltration. The specific activity of the purified recombinant ATP sulfurylase was as high as 5.1 x 10(4) u/mg. The successful application of the enzyme in pyrosequencing was also demostrated.