Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 143(4): 320-335, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37801708

ABSTRACT

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5' single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis-relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, "clonal shift" and "clonal drift" were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , RNA-Binding Proteins , Humans , Clonal Evolution/genetics , Drug Resistance, Neoplasm/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Antigen, T-Cell/genetics , Recurrence , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , T-Lymphocytes/metabolism
2.
Am J Physiol Cell Physiol ; 326(6): C1563-C1572, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38586879

ABSTRACT

Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.


Subject(s)
Antigens, CD1d , Atherosclerosis , B7-1 Antigen , Hyperlipidemias , Lipoproteins, LDL , Macrophages , Natural Killer T-Cells , Animals , Humans , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Antigens, CD1d/metabolism , Antigens, CD1d/immunology , Antigens, CD1d/genetics , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Hyperlipidemias/immunology , Hyperlipidemias/metabolism , Lipoproteins, LDL/immunology , Lipoproteins, LDL/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice , B7-1 Antigen/metabolism , B7-1 Antigen/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice, Inbred C57BL , Female , Middle Aged
3.
Am J Physiol Renal Physiol ; 326(6): F988-F1003, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38634138

ABSTRACT

Acid sphingomyelinase (ASM) has been reported to increase tissue ceramide and thereby mediate hyperhomocysteinemia (hHcy)-induced glomerular nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation, inflammation, and sclerosis. In the present study, we tested whether somatic podocyte-specific silencing of Smpd1 gene (mouse ASM gene code) attenuates hHcy-induced NLRP3 inflammasome activation and associated extracellular vesicle (EV) release in podocytes and thereby suppresses glomerular inflammatory response and injury. In vivo, somatic podocyte-specific Smpd1 gene silencing almost blocked hHcy-induced glomerular NLRP3 inflammasome activation in Podocre (podocyte-specific expression of cre recombinase) mice compared with control littermates. By nanoparticle tracking analysis (NTA), floxed Smpd1 shRNA transfection was found to abrogate hHcy-induced elevation of urinary EV excretion in Podocre mice. In addition, Smpd1 gene silencing in podocytes prevented hHcy-induced immune cell infiltration into glomeruli, proteinuria, and glomerular sclerosis in Podocre mice. Such protective effects of podocyte-specific Smpd1 gene silencing were mimicked by global knockout of Smpd1 gene in Smpd1-/- mice. On the contrary, podocyte-specific Smpd1 gene overexpression exaggerated hHcy-induced glomerular pathological changes in Smpd1trg/Podocre (podocyte-specific Smpd1 gene overexpression) mice, which were significantly attenuated by transfection of floxed Smpd1 shRNA. In cell studies, we also confirmed that Smpd1 gene knockout or silencing prevented homocysteine (Hcy)-induced elevation of EV release in the primary cultures of podocyte isolated from Smpd1-/- mice or podocytes of Podocre mice transfected with floxed Smpd1 shRNA compared with WT/WT podocytes. Smpd1 gene overexpression amplified Hcy-induced EV secretion from podocytes of Smpd1trg/Podocre mice, which was remarkably attenuated by transfection of floxed Smpd1 shRNA. Mechanistically, Hcy-induced elevation of EV release from podocytes was blocked by ASM inhibitor (amitriptyline, AMI), but not by NLRP3 inflammasome inhibitors (MCC950 and glycyrrhizin, GLY). Super-resolution microscopy also showed that ASM inhibitor, but not NLRP3 inflammasome inhibitors, prevented the inhibition of lysosome-multivesicular body interaction by Hcy in podocytes. Moreover, we found that podocyte-derived inflammatory EVs (released from podocytes treated with Hcy) induced podocyte injury, which was exaggerated by T cell coculture. Interstitial infusion of inflammatory EVs into renal cortex induced glomerular injury and immune cell infiltration. In conclusion, our findings suggest that ASM in podocytes plays a crucial role in the control of NLRP3 inflammasome activation and inflammatory EV release during hHcy and that the development of podocyte-specific ASM inhibition or Smpd1 gene silencing may be a novel therapeutic strategy for treatment of hHcy-induced glomerular disease with minimized side effect.NEW & NOTEWORTHY In the present study, we tested whether podocyte-specific silencing of Smpd1 gene attenuates hyperhomocysteinemia (hHcy)-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and associated inflammatory extracellular vesicle (EV) release in podocytes and thereby suppresses glomerular inflammatory response and injury. Our findings suggest that acid sphingomyelinase (ASM) in podocytes plays a crucial role in the control of NLRP3 inflammasome activation and inflammatory EV release during hHcy. Based on our findings, it is anticipated that the development of podocyte-specific ASM inhibition or Smpd1 gene silencing may be a novel therapeutic strategy for treatment of hHcy-induced glomerular disease with minimized side effects.


Subject(s)
Hyperhomocysteinemia , Inflammasomes , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Podocytes , Sphingomyelin Phosphodiesterase , Animals , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Podocytes/metabolism , Podocytes/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Hyperhomocysteinemia/metabolism , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/genetics , Inflammasomes/metabolism , Inflammasomes/genetics , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Glomerulonephritis/pathology , Glomerulonephritis/metabolism , Glomerulonephritis/genetics , Gene Silencing , Mice , Mice, Inbred C57BL , Extracellular Vesicles/metabolism , Male , Disease Models, Animal
4.
Blood Cells Mol Dis ; 104: 102793, 2024 01.
Article in English | MEDLINE | ID: mdl-37659255

ABSTRACT

BACKGROUND: Unrelated umbilical cord blood transplantation (UCBT) for bone marrow failure (BMF) disorders using conditioning regimens without Anti-Thymocyte Globulin (ATG) has been used as an alternative transplantation for emerging patients without matched-sibling donors. Experience with this transplant modality in children is limited, especially as a secondary treatment for transplant failure patients. PROCEDURE: We retrospectively reviewed 17 consecutive bone marrow failure patients who underwent unrelated umbilical cord blood transplantation in our center and received conditioning regimens of Total Body Irradiation (TBI) or Busulfan (BU) + Fludarabine (FLU) + Cyclophosphamide (CY). RESULTS: Among the 17 BMF patients, 15 patients were treated with first cord blood transplantation and another 2 with secondary cord blood transplantation because of graft failure after first haploidentical stem cell transplantation at days +38 and +82. All patients engrafted with a median donor cell chimerism of 50 % at days +7 (range, 16 %-99.95 %) and finally rose to 100 % at days +30. Median time to neutrophil engraftment was 19 days (range, 12-30) and time to platelet engraftment was 32 days (range, 18-61). Pre-engraftment syndrome (PES) was found in 16 patients (94.11 %, 16/17). Cumulative incidence of grades II to IV acute GVHD was 58.8 % (95 % CI: 32.7-84.9 %), and 17.6 % (95 % CI: 2.6-37.9 %) of patients developed chronic GVHD. The 3-year overall survival (OS) and failure-free survival (FFS) rates were 92.86 ± 6.88 %. CONCLUSION: UCBT is an effective alternative treatment for bone marrow failure pediatric patients. TBI/BU + FLU + CY regimen ensure a high engraftment rate for unrelated umbilical cord blood transplantation, which overcomes the difficulty of graft failure. Secondary salvage use of cord blood transplantation may still be useful for patients who have failed after other transplantation.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Child , Antilymphocyte Serum/therapeutic use , Fetal Blood , Retrospective Studies , Transplantation Conditioning , Graft vs Host Disease/etiology , Cyclophosphamide , Busulfan/therapeutic use , Bone Marrow Failure Disorders/therapy
5.
Am J Pathol ; 193(4): 493-508, 2023 04.
Article in English | MEDLINE | ID: mdl-36638912

ABSTRACT

To study the mechanism by which nonalcoholic fatty liver disease (NAFLD) contributes to vascular endothelial Nod-like receptor pyrin domain 3 (NLRP3) inflammasome activation and neointima hyperplasia, NAFLD was established in high-fat diet (HFD)-treated Asah1fl/fl/Albcre (liver-specific deletion of the acid ceramidase gene Asah1) mice. Compared with Asah1 flox [Asah1fl/fl/wild type (WT)] and wild-type (WT/WT) mice, Asah1fl/fl/Albcre mice exhibited significantly enhanced ceramide levels and lipid deposition on HFD in the liver. Moreover, Asah1fl/fl/Albcre mice showed enhanced expression of extracellular vesicle (EV) markers, CD63 and annexin II, but attenuated lysosome-multivesicular body fusion. All these changes were accompanied by significantly increased EV counts in the plasma. In a mouse model of neointima hyperplasia, liver-specific deletion of the Asah1 gene enhanced HFD-induced neointima proliferation, which was associated with increased endothelial NLRP3 inflammasome formation and activation and more severe endothelial damage. The EVs isolated from plasma of Asah1fl/fl/Albcre mice on HFD were found to markedly enhance NLRP3 inflammasome formation and activation in primary cultures of WT/WT endothelial cells compared with those isolated from WT/WT mice or normal diet-treated Asah1fl/fl/Albcre mice. These results suggest that the acid ceramidase/ceramide signaling pathway controls EV release from the liver, and its deficiency aggravates NAFLD and intensifies hepatic EV release into circulation, which promotes endothelial NLRP3 inflammasome activation and consequent neointima hyperplasia in the mouse carotid arteries.


Subject(s)
Extracellular Vesicles , Non-alcoholic Fatty Liver Disease , Mice , Animals , Inflammasomes/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Knockout , Acid Ceramidase/genetics , Acid Ceramidase/metabolism , Endothelial Cells/metabolism , Neointima/metabolism , Gene Knockout Techniques , Hyperplasia , Liver/metabolism , Extracellular Vesicles/metabolism , Ceramides , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
7.
Environ Sci Technol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976350

ABSTRACT

Perfluorooctane sulfonamide (PFOSA) is an immediate perfluorooctanesulfonate (PFOS) precursor (PreFOS). Previous studies have shown PFOSA to induce stronger toxic responses compared to other perfluorinated compounds (PFCs). However, the specific nature of PFOSA-induced toxicity, whether autonomous or mediated by its metabolite PFOS, has not been fully elucidated. This study systematically investigates the immunomodulatory effects of PFOSA and PFOS in zebrafish (Danio rerio). Exposure to PFOSA compromised the zebrafish's ability to defend against pathogenic infections, as evidenced by increased bacterial adhesion to their skin and reduced levels of the biocidal protein lysozyme (LYSO). Moreover, PFOSA exposure was associated with disruptions in inflammatory markers and immune indicators, along with a decrease in immune cell counts. The findings from this study suggest that the immunotoxicity effects of PFOSA are primarily due to its own toxicity rather than its metabolite PFOS. This conclusion was supported by dose-dependent responses, the severity of observed effects, and multivariate analysis. In addition, our experiments using NF-κB-morpholino knock-down techniques further confirmed the role of the Nuclear factor-κappa B pathway in mediating PFOSA-induced immunotoxicity. In conclusion, this study reveals that PFOSA impairs the immune system in zebrafish through an autotoxic mechanism, providing valuable insights for assessing the ecological risks of PFOSA.

8.
Sensors (Basel) ; 24(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38400507

ABSTRACT

There has been a significant shift in research focus in recent years toward laser-induced graphene (LIG), which is a high-performance material with immense potential for use in energy storage, ultrahydrophobic water applications, and electronic devices. In particular, LIG has demonstrated considerable potential in the field of high-precision human motion posture capture using flexible sensing materials. In this study, we investigated the surface morphology evolution and performance of LIG formed by varying the laser energy accumulation times. Further, to capture human motion posture, we evaluated the performance of highly accurate flexible wearable sensors based on LIG. The experimental results showed that the sensors prepared using LIG exhibited exceptional flexibility and mechanical performance when the laser energy accumulation was optimized three times. They exhibited remarkable attributes, such as high sensitivity (~41.4), a low detection limit (0.05%), a rapid time response (response time of ~150 ms; relaxation time of ~100 ms), and excellent response stability even after 2000 s at a strain of 1.0% or 8.0%. These findings unequivocally show that flexible wearable sensors based on LIG have significant potential for capturing human motion posture, wrist pulse rates, and eye blinking patterns. Moreover, the sensors can capture various physiological signals for pilots to provide real-time capturing.


Subject(s)
Graphite , Wearable Electronic Devices , Humans , Motion Capture , Electronics , Lasers
9.
Am J Pathol ; 192(1): 43-55, 2022 01.
Article in English | MEDLINE | ID: mdl-34717894

ABSTRACT

Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation in podocytes is reportedly associated with enhanced release of exosomes containing NLRP3 inflammasome products from these cells during hyperhomocysteinemia (hHcy). This study examined the possible role of increased exosome secretion during podocyte NLRP3 inflammasome activation in the glomerular inflammatory response. Whether exosome biogenesis and lysosome function are involved in the regulation of exosome release from podocytes during hHcy in mice and upon stimulation of homocysteine (Hcy) in podocytes was tested. By nanoparticle tracking analysis, treatments of mice with amitriptyline (acid sphingomyelinase inhibitor), GW4869 (exosome biogenesis inhibitor), and rapamycin (lysosome function enhancer) were found to inhibit elevated urinary exosomes during hHcy. By examining NLRP3 inflammasome activation in glomeruli during hHcy, amitriptyline (but not GW4869 and rapamycin) was shown to have an inhibitory effect. However, all treatments attenuated glomerular inflammation and injury during hHcy. In cell studies, Hcy treatment stimulated exosome release from podocytes, which was prevented by amitriptyline, GW4869, and rapamycin. Structured illumination microscopy revealed that Hcy inhibited lysosome-multivesicular body interactions in podocytes, which was prevented by amitriptyline or rapamycin but not GW4869. Thus, the data from this study shows that activation of exosome biogenesis and dysregulated lysosome function are critically implicated in the enhancement of exosome release from podocytes leading to glomerular inflammation and injury during hHcy.


Subject(s)
Exosomes/metabolism , Hyperhomocysteinemia/pathology , Inflammation/pathology , Kidney Glomerulus/pathology , Lysosomes/metabolism , Podocytes/metabolism , Animals , Homocysteine/metabolism , Inflammasomes/metabolism , Male , Mice, Inbred C57BL , Multivesicular Bodies/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Podocytes/pathology , Sphingomyelin Phosphodiesterase/metabolism
10.
J Autoimmun ; 136: 103026, 2023 04.
Article in English | MEDLINE | ID: mdl-37001436

ABSTRACT

Acquired aplastic anemia (AA) is recognized as an immune-mediated disorder resulting from active destruction of hematopoietic cells in bone marrow (BM) by effector T lymphocytes. Bulk genomic landscape analysis and transcriptomic profiling have contributed to a better understanding of the recurrent cytogenetic abnormalities and immunologic cues associated with the onset of hematopoietic destruction. However, the functional mechanistic determinants underlying the complexity of heterogeneous T lymphocyte populations as well as their correlation with clinical outcomes remain to be elucidated. To uncover dysfunctional mechanisms acting within the heterogeneous marrow-infiltrating immune environment and examine their pathogenic interplay with the hematopoietic stem/progenitor pool, we exploited single-cell mass cytometry for BM mononuclear cells of severe AA (SAA) patients pre- and post-immunosuppressive therapy, in contrast to those of healthy donors. Alignment of BM cellular composition with hematopoietic developmental trajectories revealed potential functional roles for non-canonically activated CD4+ naïve T cells in newly-diagnosed pediatric cases of SAA. Furthermore, single-cell transcriptomic profiling highlighted a population of Th17-polarized CD4+CAMK4+ naïve T cells showing activation of the IL-6/JAK3/STAT3 pathway, while gene signature dissection indicated a predisposition to proinflammatory pathogenesis. Retrospective validation from our SAA cohort of 231 patients revealed high plasma levels of IL-6 as an independent risk factor of delayed hematopoietic response to antithymocyte globulin-based immunosuppressive therapy. Thus, IL-6 warrants further investigation as a putative therapeutic target in SAA.


Subject(s)
Anemia, Aplastic , Humans , Child , Anemia, Aplastic/genetics , Anemia, Aplastic/pathology , Interleukin-6/genetics , Retrospective Studies , Th17 Cells , Single-Cell Analysis , Janus Kinase 3 , STAT3 Transcription Factor/genetics
11.
Inorg Chem ; 62(11): 4581-4589, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36935646

ABSTRACT

The separation of lanthanides and actinides has attracted great attention in spent nuclear fuel reprocessing up to date. In addition, liquid-liquid extraction is a feasible and useful way to separate An(III) from Ln(III) based on their relative solubilities in two different immiscible liquids. The hydrophilic bipyridine- and phenanthroline-based nitrogen-chelating ligands show excellent performance in separation of Am(III) and Eu(III) as reported previously. To profoundly explore the separation mechanism, herein, we first of all designed four hydrophilic sulfonated and phosphorylated ligands L1, L2, L3, and L4 based on the bipyridine and phenanthroline backbones. In addition, we studied the structures of these ligands and their neutral complexes [ML(NO3)3] (M = Am, Eu) as well as the thermodynamic properties of complexing reactions through the scalar relativistic density functional theory. According to the changes of the Gibbs free energy for the back-extraction reactions, the phenanthroline-based ligands L2 and L4 have stronger complexing capacity for both Am(III) and Eu(III) ions while the phosphorylated ligand L3 with the bipyridine framework has the highest Am(III)/Eu(III) selectivity. In addition, the charge decomposition analysis revealed a higher degree of charge transfer from the ligand to Am(III), suggesting stronger donor-acceptor interactions in the Am(III) complexes. This study can provide theoretical insights into the separation of actinide(III)/lanthanide(III) using hydrophilic sulfonated and phosphorylated N-donor ligands.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(3): 265-271, 2023 Mar 15.
Article in Zh | MEDLINE | ID: mdl-36946161

ABSTRACT

OBJECTIVES: To investigate the clinical features of juvenile myelomonocytic leukemia (JMML) and their association with prognosis. METHODS: Clinical and prognosis data were collected from the children with JMML who were admitted from January 2008 to December 2016, and the influencing factors for prognosis were analyzed. RESULTS: A total of 63 children with JMML were included, with a median age of onset of 25 months and a male/female ratio of 3.2∶1. JMML genetic testing was performed for 54 children, and PTPN11 mutation was the most common mutation and was observed in 23 children (43%), among whom 19 had PTPN11 mutation alone and 4 had compound PTPN11 mutation, followed by NRAS mutation observed in 14 children (26%), among whom 12 had NRAS mutation alone and 2 had compound NRAS mutation. The 5-year overall survival (OS) rate was only 22%±10% in these children with JMML. Of the 63 children, 13 (21%) underwent hematopoietic stem cell transplantation (HSCT). The HSCT group had a significantly higher 5-year OS rate than the non-HSCT group (46%±14% vs 29%±7%, P<0.05). There was no significant difference in the 5-year OS rate between the children without PTPN11 gene mutation and those with PTPN11 gene mutation (30%±14% vs 27%±10%, P>0.05). The Cox proportional-hazards regression model analysis showed that platelet count <40×109/L at diagnosis was an influencing factor for 5-year OS rate in children with JMML (P<0.05). CONCLUSIONS: The PTPN11 gene was the most common mutant gene in JMML. Platelet count at diagnosis is associated with the prognosis in children with JMML. HSCT can improve the prognosis of children with JMML.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myelomonocytic, Juvenile , Child , Humans , Male , Female , Child, Preschool , Leukemia, Myelomonocytic, Juvenile/diagnosis , Leukemia, Myelomonocytic, Juvenile/genetics , Leukemia, Myelomonocytic, Juvenile/therapy , Prognosis , Genetic Testing , Mutation
13.
J Lipid Res ; 63(12): 100298, 2022 12.
Article in English | MEDLINE | ID: mdl-36252682

ABSTRACT

The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome is activated during atherogenesis, but how this occurs is unclear. Here, we explored the mechanisms activating and regulating NLRP3 inflammasomes via the acid sphingomyelinase (ASM)-ceramide signaling pathway. As a neointima formation model, partial left carotid ligations were performed on endothelial cell (EC)-specific ASM transgene mice (Smpd1trg/ECcre) and their control littermates (Smpd1trg/WT and WT/WT) fed on the Western diet (WD). We found neointima formation remarkably increased in Smpd1trg/ECcre mice over their control littermates. Next, we observed enhanced colocalization of NLRP3 versus adaptor protein ASC (the adaptor molecule apoptosis-associated speck-like protein containing a CARD) or caspase-1 in the carotid ECs of WD-treated Smpd1trg/ECcre mice but not in their control littermates. In addition, we used membrane raft (MR) marker flotillin-1 and found more aggregation of ASM and ceramide in the intima of Smpd1trg/ECcre mice than their control littermates. Moreover, we demonstrated by in situ dihydroethidium staining, carotid intimal superoxide levels were much higher in WD-treated Smpd1trg/ECcre mice than in their control littermates. Using ECs from Smpd1trg/ECcre and WT/WT mice, we showed ASM overexpression markedly enhanced 7-ketocholesterol (7-Ket)-induced increases in NLRP3 inflammasome formation, accompanied by enhanced caspase-1 activity and elevated interleukin-1ß levels. These 7-Ket-induced increases were significantly attenuated by ASM inhibitor amitriptyline. Furthermore, we determined that increased MR clustering with NADPH oxidase subunits to produce superoxide contributes to 7-Ket-induced NLRP3 inflammasome activation via a thioredoxin-interacting protein-mediated controlling mechanism. We conclude that ceramide from ASM plays a critical role in NLRP3 inflammasome activation during hypercholesterolemia via MR redox signaling platforms to produce superoxide, which leads to TXNIP dissociation.


Subject(s)
Hypercholesterolemia , Inflammasomes , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Superoxides/metabolism , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Neointima/metabolism , Pyrin Domain , Ceramides , Caspases/metabolism , Interleukin-1beta/metabolism
14.
Br J Haematol ; 198(6): 1041-1050, 2022 09.
Article in English | MEDLINE | ID: mdl-35880261

ABSTRACT

To create a personal prognostic model and modify the risk stratification of paediatric acute myeloid leukaemia, we downloaded the clinical data of 597 patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database as a training set and included 189 patients from our centre as a validation set. In the training set, age at diagnosis, -7/del(7q) or -5/del(5q), core binding factor fusion genes, FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD)/nucleophosmin 1 (NPM1) status, Wilms tumour 1 (WT1) mutation, biallelic CCAAT enhancer binding protein alpha (CEBPA) mutation were strongly correlated with overall survival and included to construct the model. The prognostic model demonstrated excellent discriminative ability with the Harrell's concordance index of 0.68, 3- and 5-year area under the receiver operating characteristic curve of 0.71 and 0.72 respectively. The model was validated in the validation set and outperformed existing prognostic systems. Additionally, patients were stratified into three risk groups (low, intermediate and high risk) with significantly distinct prognosis, and the model successfully identified candidates for haematopoietic stem cell transplantation. The newly developed prognostic model showed robust ability and utility in survival prediction and risk stratification, which could be helpful in modifying treatment selection in clinical routine.


Subject(s)
Leukemia, Myeloid, Acute , Myeloproliferative Disorders , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/therapeutic use , Child , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Nuclear Proteins/genetics , Prognosis , fms-Like Tyrosine Kinase 3/genetics
15.
Inorg Chem ; 61(39): 15423-15431, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36117392

ABSTRACT

The bistriazinyl-phenanthroline representative ligand, BTPhen, shows excellent extraction and separation ability for trivalent actinides and lanthanides. Herein, we first designed three phenanthroline-based nitrogen-donor ligands (L1, L2, and L3), and then studied the structural and bonding properties as well as thermodynamic properties of the probable complexes, ML(NO3)3 (M = Am or Eu and L = L1, L2, or L3), using scalar relativistic density functional theory. Our charge decomposition analysis revealed an obviously higher charge transfer from the ligand to Am(III) compared with the Eu(III) case for the studied complexes. Spin density analysis further showed a more significant degree of Am-to-ligand spin delocalization and the corresponding spin polarization on the ligands. According to the thermodynamic analysis, ligand L3 has the strongest complexation capacity for both Am(III) and Eu(III) ions, while ligand L1 has the highest Am(III)/Eu(III) selectivity in binary octanol/water solutions. We expected that this work can provide valuable theoretical support for the design of effective ligands for actinide(III)/lanthanide(III) separation in high level liquid waste.

16.
BMC Vet Res ; 18(1): 129, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35366866

ABSTRACT

BACKGROUND: Intestinal bacteria of mammal can be influenced by many factors, environmental bacteria is an important factor. However, there are few studies on the interactions between environmental bacteria and intestinal bacteria in wild mammals. To explore the associations between the intestinal bacteriome and the related environmental bacteriome, the intestinal bacterial communities of Eospalax cansus at three different sites and the bacterial communities of the surrounding soil (outside and inside the cave) at each site were investigated by 16S rRNA sequencing. RESULTS: The composition and structure between zokor intestinal bacteria and related soil bacteria were distinct, and the soil of zokor habitat harbored significantly higher diversity than that of zokor intestinal bacteria. We have found that host factors may be more important than environmental factors in shaping intestinal bacteriome. In addition, it was found that the relative abundances of shared OTUs between zokors and related soil were significantly negatively related. These shared OTUs were present in the soil at relatively low abundance. However, these shared OTUs between zokors and soil were affiliated with diverse bacterial taxa, and they were related to the degradation of complex carbohydrates. CONCLUSIONS: These results suggested that the zokor gut may mainly select for low-abundance but diverse soil bacteria, which may be a host- specific choice for zokor to meet the needs of its phytophagous dietary.


Subject(s)
Bacteria , Soil , Animals , Bacteria/genetics , Ecosystem , Muridae , RNA, Ribosomal, 16S/genetics
17.
BMC Cancer ; 21(1): 1190, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34749705

ABSTRACT

BACKGROUND: Children with acute lymphoblastic leukemia (ALL) undergoing chemotherapy experience a relatively high risk of infection. And the disturbance of gut microbiota is generally believed to impair intestinal barrier function and may induce bacterial infections and inflammation. The study aimed to investigate the alterations in the gut microbiota and assess its relationship with chemotherapy-induced pneumonia in pediatric ALL patients. METHODS: We conducted a case-control study with 14 cases affected by pneumonia and 44 unaffected subjects and characterized the physiological parameters and gut microbiota by microarray-based technique. RESULTS: There were significant differences in α- and ß-diversity in the affected group compared with the control group. At species level, the LEfSe analysis revealed that Enterococcus malodoratus, Ochrobactrum anthropi and Actinomyces cardiffensis were significantly abundant in the affected subjects. A receiver operating characteristic (ROC) curve yielded the area under the curve (AUC) of 0.773 for classification between the two groups. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the bacterial secretion system were more enriched in the affected group than in the control group. CONCLUSIONS: Gut microbiota alteration was associated with chemotherapy-induced pneumonia in pediatric ALL patients, which provided a new perspective on the personalized clinical care of pediatric ALL.


Subject(s)
Antineoplastic Agents/adverse effects , Dysbiosis/chemically induced , Gastrointestinal Microbiome/drug effects , Pneumonia/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Adolescent , Case-Control Studies , Child , Dysbiosis/diagnosis , Dysbiosis/immunology , Dysbiosis/microbiology , Feces/microbiology , Female , Gastrointestinal Microbiome/immunology , Humans , Induction Chemotherapy/adverse effects , Induction Chemotherapy/methods , Male , Pneumonia/chemically induced
18.
Ann Hematol ; 100(9): 2269-2277, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33443592

ABSTRACT

Variation in normal blood cells during chemotherapy has not been recognised as a risk factor guiding chemotherapy in childhood acute lymphoblastic leukaemia (ALL). This study aims to explore whether variations in normal haematopoiesis determine prognosis as well as to improve risk-stratified treatment in childhood ALL. A retrospective study of 279 cases of ALL treated with the CCCG-ALL-2015 regimen in the Division of Pediatric Blood Diseases Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, from May 2015 to January 2017 was performed to analyse the prognostic impact of blood cell levels on day 19 of induction therapy by Kaplan-Meier method. Patients with childhood ALL with absolute neutrophil count (ANC) ≤ 90 cells/µl, absolute monocyte count (AMC) ≤ 10 cells/µl or absolute lymphocyte count (ALC) ≤ 1000 cells/µl on day 19 of induction therapy had a lower event-free survival (EFS) rate than those with higher values (all P < 0.05). Multivariate analysis confirmed that ANC ≤ 90 cells/µl and ALC ≤ 1000 cells/µl were independent adverse prognostic factors (HR = 1.981 and 2.162, respectively, both P < 0.05). Among patients with minimal residual disease (MRD) < 1% on day 19 of induction therapy, those with ANC ≤ 90 cells/µl had lower EFS than those with ANC > 90 cells/µl (70.8 ± 6.1% vs 86.4 ± 3.1%, P = 0.001). In the subgroup with the BCR/ABL1 fusion gene, patients with ANC ≤ 90 cells/µl on day 19 of induction therapy also had lower EFS than those with ANC > 90 cells/µl (34.4 ± 25.2% vs 25.0 ± 21.7%, P = 0.041). ANC and ALC during induction therapy are independent prognostic factors for childhood ALL. ANC contributes to guiding the prognosis of patients with low-level MRD or the BCR/ABL1 fusion gene.


Subject(s)
Induction Chemotherapy , Leukocyte Count , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Child , Disease-Free Survival , Female , Humans , Lymphocyte Count , Male , Neoplasm, Residual/blood , Neoplasm, Residual/diagnosis , Neoplasm, Residual/drug therapy , Neutrophils/cytology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Prognosis , Retrospective Studies
19.
Inorg Chem ; 60(1): 357-365, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33319556

ABSTRACT

The design and development of a water-soluble heterocyclic ligand are believed to be an alternative way for improving the separation efficiency of actinides from lanthanides. Herein, we designed and synthesized a novel hydrophilic multidentate ligand: disulfonated N,N'-diphenyl-2,9-diamide-1,10-phenanthroline (DS-Ph-DAPhen) with soft and hard donor atoms, as a masking agent in aqueous solutions for Am(III) separation. The combination of N,N,N',N'-tetraoctyldiglycolamide in kerosene and DS-Ph-DAPhen in aqueous phases could separate Am(III) from Eu(III) across a range of nitric acid concentrations with very high selectivity. The coordination behaviors of Eu(III) with DS-Ph-DAPhen in aqueous solutions were studied by UV-vis titration, electrospray ionization mass spectrometry, and Fourier transform infrared spectra. The results indicated that Eu(III) ions could form both 1:1 and 1:2 complexes with the DS-Ph-DAPhen ligand in aqueous solution. Density functional theory calculation suggests that there are more covalent characters for Am-N bonds than that for Eu-N bonds in the complexes, which supports the better selectivity of the DS-Ph-DAPhen ligand toward Am(III) over Eu(III). This work demonstrates a feasible alternative approach to separating trivalent actinides from lanthanides with high selectivity.

20.
BMC Vet Res ; 17(1): 216, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34116670

ABSTRACT

BACKGROUND: The intestinal microbes in mammals play a key role in host metabolism and adaptation. As a subterranean rodent, zokor digs tunnels for foraging and mating. These digging activities of zokors increase the energy expenditure relative to their aboveground counterparts. However, relatively little is known regarding intestinal microbes of zokor and how they make full use of limited food resources underground for high energy requirements. RESULTS: Eospalax cansus and Eospalax rothschildi had distinct intestinal microbes. Although the composition of intestinal microbes is similar in two species, the proportion of bacterium are distinctly different between them. At phylum level, 11 phyla were shared between two species. Firmicutes and Bacteroidota were two dominant microbes in both of two species, while Eospalax cansus have a significantly high proportion of Firmicutes/Bacteroidota than that of Eospalax rothschildi. At genus level, norank_f_Muribaculaceae were dominant microbes in both of two zokor species. The relative abundance of 12 genera were significantly different between two species. Some bacterium including unclassified_f__Lachnospiraceae, Lachnospiraceae_NK4A136_group, Ruminococcus and Eubacterium_siraeum_group associated with cellulose degradation were significantly enriched in Eospalax cansus. Although alpha diversity was with no significant differences between Eospalax cansus and Eospalax rothschildi, the intestinal microbes between them are significant distinct in PCoA analysis. We have found that trapping location affected the alpha diversity values, while sex and body measurements had no effect on alpha diversity values. PICRUSt metagenome predictions revealed significant enrichment of microbial genes involved in carbohydrate metabolism in Eospalax cansus rather than Eospalax rothschildi. CONCLUSIONS: Our results demonstrate that Eospalax cansus harbor a stronger ability of fermentation for dietary plants than Eospalax rothschildi. The stronger ability of fermentation and degradation of cellulose of intestinal microbes of Eospalax cansus may be a long-time adaptation to limited food resources underground.


Subject(s)
Bacteria/isolation & purification , Gastrointestinal Microbiome , Muridae/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Carbohydrate Metabolism , China , Female , Male , RNA, Ribosomal, 16S , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL