Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell Mol Life Sci ; 72(23): 4653-69, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26104008

ABSTRACT

The Hippo pathway is emerging as a critical nexus that balances self-renewal of progenitors against differentiation; however, upstream elements in vertebrate Hippo signalling are poorly understood. High expression of Fat1 cadherin within the developing neuroepithelium and the manifestation of severe neurological phenotypes in Fat1-knockout mice suggest roles in neurogenesis. Using the SH-SY5Y model of neuronal differentiation and employing gene silencing techniques, we show that FAT1 acts to control neurite outgrowth, also driving cells towards terminal differentiation via inhibitory effects on proliferation. FAT1 actions were shown to be mediated through Hippo signalling where it activated core Hippo kinase components and antagonised functions of the Hippo effector TAZ. Suppression of FAT1 promoted the nucleocytoplasmic shuttling of TAZ leading to enhanced transcription of the Hippo target gene CTGF together with accompanying increases in nuclear levels of Smad3. Silencing of TAZ reversed the effects of FAT1 depletion thus connecting inactivation of TAZ-TGFbeta signalling with Hippo signalling mediated through FAT1. These findings establish FAT1 as a new upstream Hippo element regulating early stages of differentiation in neuronal cells.


Subject(s)
Cadherins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neurons/cytology , Protein Serine-Threonine Kinases/metabolism , Active Transport, Cell Nucleus , Cadherins/genetics , Cell Differentiation , Cell Line , Cell Proliferation , Gene Knockdown Techniques , Hippo Signaling Pathway , Humans , Intracellular Signaling Peptides and Proteins/genetics , Neurites/physiology , Neurons/physiology , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins
2.
Brain Behav Immun ; 48: 57-67, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25749481

ABSTRACT

Post-stroke patients describe suffering from persistent and unremitting levels of distress. Using an experimental model of focal cortical ischemia in adult male C57BL/6 mice, we examined whether exposure to chronic stress could modify the development of secondary thalamic neurodegeneration (STND), which is commonly reported to be associated with impaired functional recovery. We were particularly focused on the modulatory role of microglia-like cells, as several clinical studies have linked microglial activation to the development of STND. One month following the induction of cortical ischemia we identified that numbers of microglial-like cells, as well as putative markers of microglial structural reorganization (Iba-1), complement processing (CD11b), phagocytosis (CD68), and antigen presentation (MHC-II) were all significantly elevated in response to occlusion. We further identified that these changes co-occurred with a decrease in the numbers of mature neurons within the thalamus. Occluded animals that were also exposed to chronic stress exhibited significantly lower levels of Iba-1 positive cells and a reduced expression of Iba-1 and CD11b compared to the 'occlusion-alone' group. Interestingly, the dampened expression of microglial/monocyte markers observed in stressed animals was associated with significant additional loss of neurons. These findings indicate that the process of STND can be negatively modified, potentially in a microglial dependent manner, by exposure to chronic stress.


Subject(s)
Brain Ischemia/pathology , Microglia/pathology , Motor Cortex/pathology , Nerve Degeneration/pathology , Neurons/pathology , Stress, Physiological/physiology , Stress, Psychological/pathology , Thalamus/pathology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Brain Ischemia/metabolism , CD11b Antigen/metabolism , Calcium-Binding Proteins/metabolism , Cell Count , Disease Models, Animal , Genes, MHC Class II , Macrophage Activation , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Microglia/metabolism , Motor Cortex/metabolism , Nerve Degeneration/metabolism , Neurons/metabolism , Recovery of Function/physiology , Stress, Psychological/metabolism , Thalamus/metabolism
3.
Brain Behav Immun ; 44: 235-46, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25449583

ABSTRACT

The immune and nociceptive systems are shaped during the neonatal period where they undergo fine-tuning and maturation. Painful experiences during this sensitive period of development are known to produce long-lasting effects on the immune and nociceptive responses. It is less clear, however, whether inflammatory pain responses are primed by neonatal exposure to mild immunological stimuli, such as with lipopolysaccharide (LPS). Here, we examine the impact of neonatal LPS exposure on inflammatory pain responses, peripheral and hippocampal interleukin-1ß (IL-1ß), as well as mast cell number and degranulation in preadolescent and adult rats. Wistar rats were injected with LPS (0.05mg/kg IP, Salmonella enteritidis) or saline on postnatal days (PNDs) 3 and 5 and later subjected to the formalin test at PNDs 22 and 80-97. At both time-points, and one-hour after formalin injection, blood and hippocampus were collected for measuring circulating and central IL-1ß levels using ELISA and Western blot, respectively. Paw tissue was also isolated to assess mast cell number and degree of degranulation using Toluidine Blue staining. Behavioural analyses indicate that at PND 22, LPS-challenged rats displayed enhanced flinching (p<.01) and licking (p<.01) in response to formalin injection. At PNDs 80-97, LPS-challenged rats exhibited increased flinching (p<.05), an effect observed in males only. Furthermore, neonatal LPS exposure enhanced circulating IL-1ß and mast cell degranulation in preadolescent but not adult rats following formalin injection. Hippocampal IL-1ß levels were increased in LPS-treated adult but not preadolescent rats in response to formalin injection. These data suggest neonatal LPS exposure produces developmentally regulated changes in formalin-induced behavioural responses, peripheral and central IL-1ß levels, as well as mast cell degranulation following noxious stimulation later in life. These findings highlight the importance of immune activation during the neonatal period in shaping immune response and pain sensitivity later in life. This is of clinical relevance given the high prevalence of bacterial infection during the neonatal period, particularly in the vulnerable population of preterm infants admitted to neonatal intensive care units.


Subject(s)
Encephalitis/immunology , Nociception/physiology , Pain/immunology , Animals , Animals, Newborn , Cell Count , Cell Degranulation , Encephalitis/chemically induced , Encephalitis/metabolism , Female , Formaldehyde , Hippocampus/immunology , Hippocampus/metabolism , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Interleukin-1beta/blood , Interleukin-1beta/immunology , Lipopolysaccharides , Male , Mast Cells/immunology , Mast Cells/physiology , Motor Activity , Pain/chemically induced , Pain Measurement , Rats , Rats, Wistar
4.
Neurochem Res ; 40(2): 362-71, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25503479

ABSTRACT

While astrocytes are recognised to play a central role in repair processes following stroke, at this stage we do not have a clear understanding of how these cells are engaged during the chronic recovery phase. Accordingly, the principal aim of this study was to undertake a quantitative multi-regional investigation of astrocytes throughout the recovery process. Specifically, we have induced experimental vascular occlusion using cold-light photothrombotic occlusion of the somatosensory/motor cortex in adult male C57B6 mice. Four weeks following occlusion we collected, processed, and immunolabelled tissue using an antibody directed at the glial fibrillary acidic protein (GFAP), an astrocyte specific cytoskeletal protein marker. We investigated GFAP changes in 13 regions in both the contra- and ipsi-lateral hemispheres from control and occluded animals. Specifically, we examined the infra-limbic (A24a), pre-limbic (A25), anterior cingulate (A32), motor (M1 and M2) cortices, the forceps minor fibre tract, as well the shell of the accumbens, thalamus, cingulate cortex (A29c), hippocampus (CA1-3) and lateral hypothalamus. Tissue from occluded animals was compared against sham treated controls. We have identified that the focal occlusion produced significant astrogliosis (p < 0.05), as defined by a marked elevation in GFAP expression, within all 13 sites assessed within the ipsilateral (lesioned) hemisphere. We further observed significant increases in GFAP expression (p < 0.05) in 9 of the 13 contralesional sites examined. This work underscores that both the ipsilateral and contralesional hemispheres, at sites distal to the infarct, are very active many weeks after the initial occlusion, a finding that potentially has significant implications for understanding and improving the regeneration of the damaged brain.


Subject(s)
Astrocytes/pathology , Cognition , Gliosis/pathology , Stroke/pathology , Thrombosis/complications , Animals , Brain/metabolism , Brain/pathology , Glial Fibrillary Acidic Protein/metabolism , Mice , Mice, Inbred C57BL , Stroke/etiology , Stroke/metabolism , Thrombosis/pathology
5.
Curr Opin Behav Sci ; 28: 85-92, 2019 Aug.
Article in English | MEDLINE | ID: mdl-32190717

ABSTRACT

Today's treatment for chronic pain is inadequate, and novel targets need to be identified. This requires a better understanding of the mechanisms involved in pain sensitization and chronification. In this review, we discuss how peripheral inflammation, as occurs during an infection, modulates the central pain system. In rodents, neonatal inflammation leads to increased pain sensitivity in adulthood by priming immune components both peripherally and centrally. The excitability of neurons in the spinal cord is also altered by neonatal inflammation and may add to pain sensitization later in life. In adult humans, inflammation modulates pain sensitivity as well, partly by affecting the activity in brain areas that process and regulate pain signals. Low-grade inflammation is common in clinical populations both peripherally and centrally, and priming of the immune system has also been suggested in some pain populations. The nociceptive and immune systems are primed by infections and inflammation. The early life programming of nociceptive responses following exposure to infections or inflammation will define individual differences in adult pain perception. Immune-to-brain mechanisms and neuroimmune pathway need further investigation as they may serve both as predictors and therapeutic targets in chronic pain.

6.
Front Neurol ; 9: 743, 2018.
Article in English | MEDLINE | ID: mdl-30245664

ABSTRACT

Previous studies have shown that neonatal exposure to a mild inflammatory challenge, such as lipopolysaccharide (LPS, Salmonella enteriditis) results in altered pain behaviors later in life. To further characterize the impact of a neonatal immune challenge on pain processing, we examined the excitability of superficial dorsal horn (SDH) neurons following neonatal LPS exposure and subsequent responses to noxious stimulation at three time-points during early postnatal development. Wistar rats were injected with LPS (0.05 mg/kg i.p.) or saline on postnatal days (PNDs) 3 and 5, and later subjected to the formalin test at PNDs 7, 13, and 22. One hour after formalin injection into the plantar hindpaw, animals were euthanized (Ketamine, 100 mg/kg i.p.) and transverse slices from the lumbosacral spinal cord were prepared. Whole-cell patch-clamp recordings were made from SDH neurons (KCH3SO4-based internal, 22-24°C) on the ipsi- and contralateral sides of the spinal cord. Depolarising current steps were injected into SDH neurons to categorize action potential (AP) discharge. In both saline- and LPS-treated rats we observed age-related increases the percentage of neurons exhibiting tonic-firing, with concurrent decreases in single-spiking, between PND 7 and 22. In contrast, neonatal exposure to LPS failed to alter the proportions of AP discharge patterns at any age examined. We also assessed the subthreshold currents that determine AP discharge in SDH neurons. The rapid outward potassium current, IAr decreased in prevalence with age, but was susceptible to neonatal LPS exposure. Peak IAr current amplitude was greater in ipsilateral vs. contralateral SDH neurons from LPS-treated rats. Spontaneous excitatory synaptic currents (sEPSCs) were recorded to assess network excitability. Age-related increases were observed in sEPSC frequency and time course, but not peak amplitude, in both saline- and LPS-treated rats. Furthermore, sEPSC frequency was higher in ipsilateral vs. contralateral SDH neurons in LPS-treated animals. Taken together, these data suggest a neonatal immune challenge does not markedly affect the intrinsic properties of SDH neurons, however, it can increase the excitability of local spinal cord networks via altering the properties of rapid A-type currents and excitatory synaptic connections. These changes, made in neurons within spinal cord pain circuits, have the capacity to alter nociceptive signaling in the ascending pain pathway.

7.
Front Immunol ; 8: 276, 2017.
Article in English | MEDLINE | ID: mdl-28348566

ABSTRACT

Chronic pain is a debilitating condition that still is challenging both clinicians and researchers. Despite intense research, it is still not clear why some individuals develop chronic pain while others do not or how to heal this disease. In this review, we argue for a multisystem approach to understand chronic pain. Pain is not only to be viewed simply as a result of aberrant neuronal activity but also as a result of adverse early-life experiences that impact an individual's endocrine, immune, and nervous systems and changes which in turn program the pain system. First, we give an overview of the ontogeny of the central nervous system, endocrine, and immune systems and their windows of vulnerability. Thereafter, we summarize human and animal findings from our laboratories and others that point to an important role of the endocrine and immune systems in modulating pain sensitivity. Taking "early-life history" into account, together with the past and current immunological and endocrine status of chronic pain patients, is a necessary step to understand chronic pain pathophysiology and assist clinicians in tailoring the best therapeutic approach.

8.
Front Neurosci ; 9: 65, 2015.
Article in English | MEDLINE | ID: mdl-25805965

ABSTRACT

Exposure to early life physiological stressors, such as infection, is thought to contribute to the onset of psychopathology in adulthood. In animal models, injections of the bacterial immune challenge, lipopolysaccharide (LPS), during the neonatal period has been shown to alter both neuroendocrine function and behavioral pain responses in adulthood. Interestingly, recent evidence suggests a role for the lateral hypothalamic peptide orexin in stress and nociceptive processing. However, whether neonatal LPS exposure affects the reactivity of the orexin system to formalin-induced inflammatory pain in later life remains to be determined. Male Wistar rats (n = 13) were exposed to either LPS or saline (0.05 mg/kg, i.p) on postnatal days (PND) 3 and 5. On PND 80-97, all rats were exposed to a subcutaneous hindpaw injection of 2.25% formalin. Following behavioral testing, animals were perfused and brains processed for Fos-protein and orexin immunohistochemistry. Rats treated with LPS during the neonatal period exhibited decreased licking behaviors during the interphase of the formalin test, the period typically associated with the active inhibition of pain, and increased grooming responses to formalin in adulthood. Interestingly, these behavioral changes were accompanied by an increase in the percentage of Fos-positive orexin cells in the dorsomedial and perifornical hypothalamus in LPS-exposed animals. Similar increases in Fos-protein were also observed in stress and pain sensitive brain regions that receive orexinergic inputs. These findings highlight a potential role for orexin in the behavioral responses to pain and provide further evidence that early life stress can prime the circuitry responsible for these responses in adulthood.

9.
Psychoneuroendocrinology ; 41: 1-12, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24495603

ABSTRACT

The neonatal period is characterized by significant plasticity where the immune, endocrine, and nociceptive systems undergo fine-tuning and maturation. Painful experiences during this period can result in long-term alterations in the neurocircuitry underlying nociception, including increased sensitivity to mechanical or thermal stimuli. Less is known about the impact of neonatal exposure to mild inflammatory stimuli, such as lipopolysaccharide (LPS), on subsequent inflammatory pain responses. Here we examine the impact of neonatal LPS exposure on inflammatory pain sensitivity and HPA axis activity during the first three postnatal weeks. Wistar rats were injected with LPS (0.05mg/kg IP, Salmonella enteritidis) or saline on postnatal days (PNDs) 3 and 5 and later subjected to the formalin test at PNDs 7, 13, and 22. One hour after formalin injection, blood was collected to assess corticosterone responses. Transverse spinal cord slices were also prepared for whole-cell patch clamp recording from lumbar superficial dorsal horn neurons (SDH). Brains were obtained at PND 22 and the hypothalamus was isolated to measure glucocorticoid (GR) and mineralocorticoid receptor (MR) transcript expression using qRT-PCR. Behavioural analyses indicate that at PND 7, no significant differences were observed between saline- or LPS-challenged rats. At PND 13, LPS-challenged rats exhibited enhanced licking (p<.01), and at PND 22, increased flinching in response to formalin injection (p<.05). LPS-challenged rats also displayed increased plasma corticosterone at PND 7 and PND 22 (p<.001) but not at PND 13 following formalin administration. Furthermore, at PND 22 neonatal LPS exposure induced decreased levels of GR mRNA and increased levels of MR mRNA in the hypothalamus. The intrinsic properties of SDH neurons were similar at PND 7 and PND 13. However, at PND 22, ipsilateral SDH neurons in LPS-challenged rats had a lower input resistance compared to their saline-challenged counterparts (p<.05). These data suggest neonatal LPS exposure produces developmentally regulated changes in formalin-induced behavioural responses, corticosterone levels, and dorsal horn neuron properties following noxious stimulation later in life. These findings highlight the importance of immune activation during the neonatal period in shaping pain sensitivity later in life. This programming involves both spinal cord neurons and the HPA axis.


Subject(s)
Hypothalamo-Hypophyseal System/physiology , Hypothalamus/metabolism , Inflammation/immunology , Lipopolysaccharides/immunology , Nociception/physiology , Pituitary-Adrenal System/physiology , Posterior Horn Cells/physiology , Aging/metabolism , Aging/physiology , Animals , Animals, Newborn , Behavior, Animal , Corticosterone/blood , Female , Hypothalamo-Hypophyseal System/metabolism , Inflammation/metabolism , Inflammation/physiopathology , Inflammation/psychology , Pain Measurement , Pituitary-Adrenal System/metabolism , Rats , Receptors, Glucocorticoid/biosynthesis , Receptors, Mineralocorticoid/biosynthesis
10.
PLoS One ; 9(5): e98382, 2014.
Article in English | MEDLINE | ID: mdl-24878577

ABSTRACT

Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis) during postnatal day (PND) 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG) as well as rostral and caudal axes of the ventrolateral PAG (VLPAG). Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb) as compared to medial habenula (MHb), however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process.


Subject(s)
Formaldehyde/pharmacology , Lipopolysaccharides/pharmacology , Pain/physiopathology , Periaqueductal Gray/metabolism , Periaqueductal Gray/physiopathology , Proto-Oncogene Proteins c-fos/metabolism , Analgesia/methods , Animals , Animals, Newborn/metabolism , Female , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Pain/chemically induced , Pain/metabolism , Pain Threshold/physiology , Rats , Rats, Wistar , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/physiopathology
11.
PLoS One ; 8(1): e53384, 2013.
Article in English | MEDLINE | ID: mdl-23308208

ABSTRACT

The formalin test is increasingly applied as a model of inflammatory pain using high formalin concentrations (5-15%). However, little is known about the effects of low formalin concentrations on related behavioural responses. To examine this, rat pups were subjected to various concentrations of formalin at four developmental stages: 7, 13, 22, and 82 days of age. At postnatal day (PND) 7, sex differences in flinching but not licking responses were observed with 0.5% formalin evoking higher flinching in males than in females. A dose response was evident in that 0.5% formalin also produced higher licking responses compared to 0.3% or 0.4% formalin. At PND 13, a concentration of 0.8% formalin evoked a biphasic response. At PND 22, a concentration of 1.1% evoked higher flinching and licking responses during the late phase (10-30 min) in both males and females. During the early phase (0-5 min), 1.1% evoked higher licking responses compared to 0.9% or 1% formalin. 1.1% formalin produced a biphasic response that was not evident with 0.9 or 1%. At PND 82, rats displayed a biphasic pattern in response to three formalin concentrations (1.25%, 1.75% and 2.25%) with the presence of an interphase for both 1.75% and 2.25% but not for 1.25%. These data suggest that low formalin concentrations induce fine-tuned responses that are not apparent with the high formalin concentration commonly used in the formalin test. These data also show that the developing nociceptive system is very sensitive to subtle changes in formalin concentrations.


Subject(s)
Behavior, Animal/drug effects , Formaldehyde/pharmacology , Nociception/drug effects , Pain Measurement , Age Factors , Animals , Animals, Newborn , Behavior, Animal/physiology , Dose-Response Relationship, Drug , Female , Injections, Subcutaneous , Male , Nociception/physiology , Pain/physiopathology , Rats , Rats, Wistar , Sex Factors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL