Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Molecules ; 28(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36770879

ABSTRACT

The increasing number of contaminants in the environment has pushed water monitoring programs to find out the most hazardous known and unknown chemicals in the environment. Sample treatment-simplification methods and non-target screening approaches can help researchers to not overlook potential chemicals present in complex aqueous samples. In this work, an effect-directed analysis (EDA) protocol using the sea urchin embryo test (SET) as a toxicological in vivo bioassay was used as simplified strategy to identify potential unknown chemicals present in a very complex aqueous matrix such as hospital effluent. The SET bioassay was used for the first time here to evaluate potential toxic fractions in hospital effluent, which were obtained after a two-step fractionation using C18 and aminopropyl chromatographic semi-preparative columns. The unknown compounds present in the toxic fractions were identified by means of liquid chromatography coupled to a Q Exactive Orbitrap high-resolution mass spectrometer (LC-HRMS) and using a suspect analysis approach. The results were complemented by gas chromatography-mass spectrometry analysis (GC-MS) in order to identify the widest range of chemical compounds present in the sample and the toxic fractions. Using EDA as sample treatment simplification method, the number of unknown chemicals (>446 features) detected in the raw sample was narrowed down to 94 potential toxic candidates identified in the significantly toxic fractions. Among them, the presence of 25 compounds was confirmed with available chemical standards including 14 pharmaceuticals, a personal care product, six pesticides and four industrial products. The observations found in this work emphasize the difficulties in identifying potential toxicity drivers in complex water samples, as in the case of hospital wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Mass Spectrometry/methods , Water/analysis , Hospitals , Environmental Monitoring/methods
2.
Anal Bioanal Chem ; 414(23): 6855-6869, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35904524

ABSTRACT

In the present work, a target analysis method for simultaneously determining 24 diverse endocrine-disrupting compounds (EDCs) in urine (benzophenones, bisphenols, parabens, phthalates and antibacterials) was developed. The target analysis approach (including enzymatic hydrolysis, clean-up by solid-phase extraction and analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)) was optimized, validated and applied to volunteers' samples, in which 67% of the target EDCs were quantified. For instance, benzophenone-3 (0.2-13 ng g-1), bisphenol A (7.7-13.7 ng g-1), methyl 3,5-dihydroxybenzoate (8-254 ng g-1), mono butyl phthalate (2-17 ng g-1) and triclosan (0.3-9 ng g-1) were found at the highest concentrations, but the presence of other analogues was detected as well. The developed target method was further extended to suspect and non-target screening (SNTS) by means of LC coupled to high-resolution MS/MS. First, well-defined workflows for SNTS were validated by applying the previously developed method to an extended list of compounds (83), and then, to the same real urine samples. From a list of approximately 4000 suspects, 33 were annotated at levels from 1 to 3, with food additives/ingredients and personal care products being the most abundant ones. In the non-target approach, the search was limited to molecules containing S, Cl and/or Br atoms, annotating 4 pharmaceuticals. The results from this study showed that the combination of the lower limits of detection of MS/MS and the identification power of high-resolution MS/MS is still compulsory for a more accurate definition of human exposome in urine samples.


Subject(s)
Endocrine Disruptors , Tandem Mass Spectrometry , Benzhydryl Compounds/analysis , Chromatography, Liquid/methods , Endocrine Disruptors/analysis , Humans , Parabens/analysis , Solid Phase Extraction , Tandem Mass Spectrometry/methods
3.
Environ Sci Technol ; 54(14): 8890-8899, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32525664

ABSTRACT

Sea urchin embryo assay was used to assess general toxicity at four wastewater treatment plant effluents of Biscay (Gorliz, Mungia, Gernika, and Galindo), and within the tested range, all the extracts showed embryo growth inhibition and skeleton malformation activities with EC50 values, in relative enrichment factor units, between 1.1-16.8 and 1.1-8.8, respectively. To identify the causative compounds, effect-directed analysis was successfully applied for the first time using a sea urchin embryo test to the secondary treatment of the Galindo effluent. To this end, two subsequent fractionation steps were performed using C18 (21 fractions) and aminopropyl columns (15 fractions). By this fractionation, the number of features detected by LC-HRMS in the raw sample was drastically reduced from 1500 to 9, and among them, two pesticides (mexacarbate, 17 ng/L, and fenpropidin, 23 ng/L), two antidepressants (amitriptyline, 304 ng/L, and paroxetine, 26 ng/L), and two anthelmintic agents (mebendazole, 65 ng/L, and albendazole, 48 ng/L) could be identified in the two toxic fractions. The artificial mixture of the identified six compounds could explain 79% of the observed effect, with albendazole and paroxetine as the predominant contributors (49% and 49%, respectively) affecting the sea urchin embryogenesis activity.


Subject(s)
Wastewater , Water Pollutants, Chemical , Animals , Biological Assay , Embryo, Nonmammalian , Embryonic Development , Sea Urchins , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
Anal Bioanal Chem ; 411(2): 493-506, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30478518

ABSTRACT

In this work, the full optimisation and validation procedure to analyse a wide set of emerging organic contaminants in biotissues (mussel and fish muscle, liver, gills and brain) and biofluids (fish plasma and bile) is described. The target families include artificial sweeteners, industrial products, hormones, pharmaceutical and personal care products, pesticides and phytoestrogens. Different clean-up strategies (hydrophilic-lipophilic-balanced (HLB) solid-phase extraction, Florisil solid-phase extraction and liquid-liquid extraction followed by HLB solid-phase extraction and microextraction based on polyethersulfone polymer) were evaluated for the clean-up of focused ultrasonic solid-liquid extraction (FUSLE) extracts before the analysis by liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS). The methods afforded satisfactory apparent recovery values (71-126%) using isotopically labelled analytes and matrix-matched calibration approach, regardless of the matrix. Method detection limits in the range of 4-48 ng/g and 0.3-111 ng/L were obtained for biotissues and biofluids, respectively. The developed method was applied to determine the uptake and tissue distribution in juvenile gilt-head bream (Sparus aurata) during 7 days in seawater, and unexpectedly, perfluoro-1-butanesulfonate tended to accumulate in liver and, to a lesser extent, in muscle and gills. Furthermore, real mussel samples collected in the Basque coast were also analysed and the presence of the highly consumed valsartan (7 ng/g) and telmisartan (6.8 ng/g) compounds in bivalves is reported for the first time here. Graphical abstract ᅟ.


Subject(s)
Bivalvia , Body Fluids/chemistry , Chromatography, Liquid , Fishes , Tandem Mass Spectrometry , Water Pollutants, Chemical/chemistry , Animals , Organic Chemicals/chemistry , Sea Bream , Seawater , Water Pollutants, Chemical/pharmacokinetics
5.
Environ Sci Technol ; 52(5): 2603-2611, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29415544

ABSTRACT

N-ethyl perfluorooctane sulfonamide (EtFOSA) is the active ingredient of Sulfluramid, a pesticide which is used extensively in South America for control of leaf-cutting ants. Despite being a known precursor to perfluorooctanesulfonate (PFOS), the importance of EtFOSA as a source of environmental PFOS remains unclear. In the present work, uptake, leaching, and biodegradation of EtFOSA and its transformation products were assessed over 81 days in soil-carrot ( Daucus carota ssp sativus) mesocosms for the first time. Experiments performed in the presence of carrot produced PFOS yields of up to 34% using a technical EtFOSA standard and up to 277% using Grão Forte, a commercial Sulfluramid bait formulation containing 0.0024% EtFOSA. Perfluorooctane sulfonamido acetate (FOSAA), perfluorooctane sulfonamide (FOSA), and perfluorooctanoic acid (PFOA) also formed over the course of the experiments, with the latter substance attributed to the presence of perfluorooctanamide impurities. The leachate contained low levels of transformation products and a high FOSA:PFOS ratio, consistent with recent observations in Brazilian surface water. In carrots, the more hydrophilic transformation products (e.g., PFOS) occurred primarily in the leaves, while the more hydrophobic products (e.g., FOSA, FOSAA, and EtFOSA) occurred in the peel and core. Remarkably, isomer-specific analysis revealed that the linear EtFOSA isomer biodegraded significantly faster than branched isomers. These data collectively show that the application of Sulfluramid baits can lead to the occurrence of PFOS in crops and in the surrounding environment, in considerably higher yields than previously thought.


Subject(s)
Alkanesulfonic Acids , Daucus carota , Fluorocarbons , Pesticides , Soil Pollutants , Brazil , Soil , Sulfonamides
6.
Anal Bioanal Chem ; 410(2): 615-632, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29214535

ABSTRACT

A new procedure using polyethersulfone (PES) microextraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was developed in this work for the simultaneous determination of 41 multiclass priority and emerging organic pollutants including herbicides, hormones, personal care products, and pharmaceuticals, among others, in seawater, wastewater treatment plant (WWTP) effluents, and estuary samples. The optimization of the analysis included two different chromatographic columns and different variables (polarity, fragmentor voltage, collision energy, and collision cell accelerator) of the mass spectrometer. In the case of PES extraction, ion strength of the water, pH, addition of EDTA, and the amount of the polymeric material were thoroughly investigated. The developed procedure was compared with a previously validated one based on a standard solid-phase extraction (SPE). In contrast to the SPE protocol, the PES method allowed a cost-efficient extraction of complex aqueous samples with lower matrix effect from 120 mL of water sample. Satisfactory and comparable apparent recovery values (80-119 and 70-131%) and method quantification limits (MQLs, 0.4-26 and 0.2-23 ng/L) were obtained for PES and SPE procedures, respectively, regardless of the matrix. Repeatability values lower than 27% were obtained. Finally, the developed methods were applied to the analysis of real samples from the Basque Country and irbesartan, valsartan, acesulfame, and sucralose were the analytes most often detected at the highest concentrations (51-1096 ng/L). Graphical abstract Forty-one multiclass pollutant determination in environmental waters by means of PES/SPE-LC-MS/MS.


Subject(s)
Herbicides/analysis , Hormones/analysis , Pharmaceutical Preparations/analysis , Polymers/chemistry , Solid Phase Extraction/methods , Sulfones/chemistry , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Chromatography, Liquid/methods , Estuaries , Limit of Detection , Seawater/analysis , Wastewater/analysis
7.
Environ Sci Technol ; 51(4): 2464-2471, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28106990

ABSTRACT

Extensive global use of the serotonin-norepinephrine reuptake inhibitor Amitriptyline (AMI) for treatment of mental health problems has led to its common occurrence in the aquatic environment. To assess AMI bioconcentration factors, tissue distribution, and metabolite formation in fish, we exposed gilt-head bream (Sparus aurata) to AMI in seawater for 7 days at two concentrations (0.2 µg/L and 10 µg/L). Day 7 proportional bioconcentration factors (BCFs) ranged from 6 (10 µg/L dose, muscle) to 127 (0.2 µg/L dose, brain) and were consistently larger at the low dose level. The relative tissue distribution of AMI was consistent at both doses, with concentrations decreasing in the order brain ≈ gill > liver > plasma > bile ≫ muscle. Using a suspect screening workflow based on liquid chromatography-high resolution (Orbitrap) mass spectrometry we identified 33 AMI metabolites (both Phase I and Phase II), occurring mostly in bile, liver and plasma. Ten structures are reported for the first time. Remarkably, all 33 metabolites retained the tricyclic ring structure common to tricyclic antidepressants, which may be toxicologically relevant. Collectively these data indicate that, in addition to AMI, a broad suite of metabolites should be included in biomonitoring campaigns in order to fully characterize exposure in aquatic wildlife.


Subject(s)
Amitriptyline , Water Pollutants, Chemical , Animals , Biotransformation , Female , Gills/metabolism , Muscles/metabolism , Sea Bream/metabolism , Swine
8.
Anal Bioanal Chem ; 409(27): 6359-6370, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28852783

ABSTRACT

This work describes the optimization, validation, and application in real samples of accurate and precise analytical methods to determine ten fluoroquinolones (FQs) (norfloxacin, enoxacin, pefloxacin, ofloxacin, levofloxacin, ciprofloxacin, danofloxacin, lomefloxacin, enrofloxacin, and sparfloxacin) in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle and liver), and fish biofluids (plasma and bile). The analysis step performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was fully optimized to improve the separation and detection steps. The extraction of analytes from fish tissues was accomplished using focused ultrasound solid-liquid extraction using methanol/acetic acid (95:5 v/v) as extractant. The preconcentration and clean-up steps were optimized in terms of extraction efficiency and cleanliness and the best strategy for each matrix was selected: (i) Oasis HLB for seawater and muscle, (ii) liquid-liquid extraction combined with Oasis HLB for the lipid-rich liver, (iii) the combination of Evolute-WAX and Oasis HLB for estuarine water and wastewater treatment plant effluent, and (iv) molecular imprinted polymers for biofluids. The methods afforded satisfactory apparent recoveries (80-126%) and repeatability (RSD < 15%), except for sparfloxacin, which showed a lack of correction with the available isotopically labeled surrogates ([2H8]-ciprofloxacin and [2H5]-enrofloxacin). Ciprofloxacin, norfloxacin, and ofloxacin were detected in both water and fish liver samples from the Biscay Coast at concentrations up to 278 ng/L and 4 ng/g, respectively. To the best of our knowledge, this work is one of the few analyzing up to ten FQs and in so many fish tissues and biofluids. Graphical abstract Determination of fluoroquinolones in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle and liver), and fish biofluids (plasma and bile).


Subject(s)
Chromatography, Liquid/methods , Environmental Monitoring/methods , Fishes , Fluoroquinolones/analysis , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Animals , Bile/chemistry , Estuaries , Fishes/blood , Fishes/metabolism , Limit of Detection , Seawater/analysis , Solid Phase Extraction/methods , Sonication/methods , Wastewater/analysis
9.
Anal Bioanal Chem ; 408(4): 1205-16, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26677016

ABSTRACT

This work describes the optimization, validation, and application in real samples of accurate and precise analytical methods to determine tricyclic antidepressants (TCAs), including amitriptyline, nortriptyline, imipramine, and clomipramine in different environmental matrices, such as water (estuary, seawater, and wastewater treatment plant effluent) and biota (fish muscle, fish liver, and mussels), which would lead to supplement the scarce information on the presence of TCAs in aquatic organisms. The analysis step performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was fully optimized to improve the sensitivity of the separation and detection steps. The extraction of solid samples was accomplished using focused ultrasonic solid-liquid extraction (FUSLE), which required a low amount of sample (0.5 g), solvent (7 mL acetonitrile/H2O, 95:5 v/v) and short extraction time (30 s). In the optimisation of the clean-up step, mixed mode solid-phase extraction (SPE) using a strong cation exchanger rendered clean extracts and the best results in terms of extraction efficiency and matrix effect. The same SPE mode was also used for the extraction and pre-concentration of TCAs from environmental water matrices. The methods afforded satisfactory apparent recovery values (86-122%) and repeatability (RSD < 5%), regardless of the matrix. Finally, the developed methods were applied to the analysis of real samples from the Biscay Coast, where TCAs were detected in both water and biota samples up to 25.9 ng/L and 1.8 ng/g, respectively. Up to our knowledge, this is the first work using FUSLE for the determination of TCAs and one of the few analyzing TCAs in biota samples.


Subject(s)
Antidepressive Agents, Tricyclic/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Animals , Estuaries , Fishes , Food Contamination/analysis , Limit of Detection , Liver/chemistry , Muscle, Skeletal/chemistry , Mytilus/chemistry , Seawater/analysis , Solid Phase Extraction/methods , Spain , Spectrometry, Mass, Electrospray Ionization/methods , Wastewater/analysis
10.
J Sep Sci ; 38(13): 2298-304, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25885885

ABSTRACT

According to the European Water Framework Directive, environmental assessment of organic compounds should be made in whole-water samples, but due to their hydrophobicity and strong attraction to organic content these compounds can be found bound to suspended particle matter or in the dissolved fraction. In this work, the extraction of musk compounds was studied in whole-water samples exhibiting different amounts of dissolved organic carbon and suspended particulate matter using polyethersulfone preconcentration technique. Matrix effects in estuarine and wastewater (both influent and effluent) were evaluated for filtered and unfiltered samples. For unfiltered samples, estuarine water exhibited matrix effects <20%, while for effluent it was up to 48% and for influent ranged from 85 to 99%. To compensate matrix effects and determine total concentrations in unfiltered samples, different quantification approaches were tested: the use of deuterated analogues and standard additions. Standard additions provided the best results for unfiltered samples. Finally, filtered and unfiltered samples were analyzed using both polyethersulfone preconcentration and membrane-assisted solvent extraction and results showed a good agreement between the two methods. In both cases unfiltered samples provided concentrations 1.5-2.6 times higher than filtered samples.

11.
Chemosphere ; 351: 141221, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224745

ABSTRACT

Suspect and non-target screening (SNTS) methods are being promoted in order to decode the human exposome since a wide chemical space can be analysed in a diversity of human biofluids. However, SNTS approaches in the exposomics field are infra-studied in comparison to environmental or food monitoring studies. In this work, a comprehensive suspect screening workflow was developed to annotate exposome-related xenobiotics and phase II metabolites in diverse human biofluids. Precisely, human urine, breast milk, saliva and ovarian follicular fluid were employed as samples and analysed by means of ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometry (UHPLC-HRMS/MS). To automate the workflow, the "peak rating" parameter implemented in Compound Discoverer 3.3.2 was optimized to avoid time-consuming manual revision of chromatographic peaks. In addition, the presence of endogenous molecules that might interfere with the annotation of xenobiotics was carefully studied as the employment of inclusion and exclusion suspect lists. To evaluate the workflow, limits of identification (LOIs) and type I and II errors (i.e., false positives and negatives, respectively) were calculated in both standard solutions and spiked biofluids using 161 xenobiotics and 22 metabolites. For 80.3 % of the suspects, LOIs below 15 ng/mL were achieved. In terms of type I errors, only two cases were identified in standards and spiked samples. Regarding type II errors, the 7.7 % errors accounted in standards increased to 17.4 % in real samples. Lastly, the use of an inclusion list for endogens was favoured since it avoided 18.7 % of potential type I errors, while the exclusion list caused 7.2 % of type II errors despite making the annotation workflow less time-consuming.


Subject(s)
Exposome , Female , Humans , Xenobiotics/metabolism , Workflow , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry
12.
Talanta ; 271: 125698, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38262128

ABSTRACT

Persistent, mobile and toxic substances have drawn attention nowadays due to their particular properties, but they are overlooked in human monitorization works, limiting the knowledge of the human exposome. In that sense, human urine is an interesting matrix since not only parent compounds are eliminated, but also their phase II metabolites that could act as biomarkers. In this work, 11 sample preparation procedures involving preconcentration were tested to ensure maximum analytical coverage in human urine using mixed-mode liquid chromatography coupled with high-resolution tandem mass spectrometry. The optimized procedure consisted of a combination of solid-phase extraction and salt-assisted liquid-liquid extraction and it was employed for suspect screening. Additionally, a non-discriminatory dilute-and-shoot approach was also evaluated. After evaluating the workflow in terms of limits of identification and type II errors (i.e., false negatives), a pooled urine sample was analysed. From a list of 1450 suspects and in-silico simulated 1568 phase II metabolites (i.e. sulphates, glucuronides, and glycines), 44 and 14 substances were annotated, respectively. Most of the screened suspects were diverse industrial chemicals, but biocides, natural products and pharmaceuticals were also detected. Lastly, the complementarity of the sample preparation procedures, columns, and analysis conditions was assessed. As a result, dilute-and-shoot and the Acclaim Trinity P1 column at pH = 3 (positive ionization) and pH = 7 (negative ionization) allowed the maximum coverage since almost 70 % of the total suspects could be screened using those conditions.


Subject(s)
Body Fluids , Tandem Mass Spectrometry , Humans , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Specimen Handling , Solid Phase Extraction/methods
13.
Sci Total Environ ; 946: 174062, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917906

ABSTRACT

The concern on the fate and distribution of contaminants of emerging concern (CECs) is a burning topic due to their widespread occurrence and potential harmful effects. Particularly, antibiotics have received great attention due to their implications in antimicrobial resistance occurrence. The impact of wastewater treatment plants (WWTP) is remarkable, being one of the main pathways for the introduction of CECs into aquatic systems. The combination of novel analytical methodologies and risk assessment strategies is a promising tool to find out environmentally relevant compounds posing major concerns in freshwater ecosystems impacted by those wastewater effluents. Within this context, a multi-target approach was applied in three Spanish river basins affected by different WWTP treated effluents for spatio-temporal monitoring of their chemical status. Solid phase extraction followed by ultra-high-performance liquid chromatography were used for the quantification of a large panel of compounds (n = 270), including pharmaceuticals and other consumer products, pesticides and industrial chemicals. To this end, water samples were collected in four sampling campaigns at three locations in each basin: (i) upstream from the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream from the WWTPs (500 m downriver from the effluent outfall). Likewise, 24-h composite effluent samples from each of the WWTPs were provided in all sampling periods. First the occurrence and distribution of these compounds were assessed. Diverse seasonal trends were observed depending on the group of emerging compounds, though COVID-19 outbreak affected variations of certain pharmaceuticals. Detection frequencies and concentrations in effluents generally exceeded those in river samples and concentrations measured upstream WWTPs were generally low or non-quantifiable. Finally, risks associated with maximum contamination levels were evaluated using two different approaches to account for antibiotic resistance selection as well. From all studied compounds, 89 evidenced environmental risk on at least one occasion in this study.

14.
J Chromatogr A ; 1705: 464141, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37364523

ABSTRACT

In this work, a comprehensive method for the simultaneous determination of 33 diverse persistent and mobile organic compounds (PMOCs) in human urine was developed by dilute-and-shoot (DS) followed by mixed-mode liquid chromatography coupled with tandem mass spectrometry (MMLC-MS/MS). In the sample preparation step, DS was chosen since it allowed the quantification of all targets in comparison to lyophilization. For the chromatographic separation, Acclaim Trinity P1 and P2 trimodal columns provided greater capacity for retaining PMOCs than reverse phase and hydrophilic interaction liquid chromatography. Therefore, DS was validated at 5 and 50 ng/mL in urine with both mixed mode columns at pH = 3 and 7. Regarding figures of merit, linear calibration curves (r2 > 0.999) built between instrumental quantification limits (mostly below 5 ng/mL) and 500 ng/mL were achieved. Despite only 60% of the targets were recovered at 5 ng/mL because of the dilution, all PMOCs were quantified at 50 ng/mL. Using surrogate correction, apparent recoveries in the 70-130% range were obtained for 91% of the targets. To analyse human urine samples, the Acclaim Trinity P1 column at pH = 3 and 7 was selected as a consensus between analytical coverage (i.e. 94% of the targets) and chromatographic runs. In a pooled urine sample, industrial chemicals (acrylamide and bisphenol S), biocides and their metabolites (2-methyl-4-isothiazolin-3-one, dimethyl phosphate, 6-chloropyridine-3-carboxylic acid, and ammonium glufosinate) and an artificial sweetener (aspartame) were determined at ng/mL levels. The outcomes of this work showed that humans are also exposed to PMOCs due to their persistence and mobility, and therefore, further human risk assessment is needed.


Subject(s)
Urinalysis , Limit of Detection , Urinalysis/methods , Tandem Mass Spectrometry/methods , Humans , Chromatography, High Pressure Liquid/methods
15.
Chemosphere ; 339: 139690, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541438

ABSTRACT

The use of suspect and non-target screening (SNTS) for the characterization of the chemical exposome employing human biofluids is gaining attention. Among the biofluids, urine is one of the preferred matrices since organic xenobiotics are excreted through it after metabolization. However, achieving a consensus between selectivity (i.e. preserving as many compounds as possible) and sensitivity (i.e. minimizing matrix effects by removing interferences) at the sample preparation step is challenging. Within this context, several sample preparation approaches, including solid-phase extraction (SPE), liquid-liquid extraction (LLE), salt-assisted LLE (SALLE) and dilute-and-shoot (DS) were tested to screen not only exogenous compounds in human urine but also their phase II metabolites using liquid-chromatography coupled to high-resolution tandem mass spectrometry (LC-HRMS/MS). Additionally, enzymatic hydrolysis of phase II metabolites was evaluated. Under optimal conditions, SPE resulted in the best sample preparation approach in terms of the number of detected xenobiotics and metabolites since 97.1% of the total annotated suspects were present in samples extracted by SPE. In LLE and SALLE, pure ethyl acetate turned out to be the best extractant but fewer suspects than with SPE (80.7%) were screened. Lastly, only 52.5% of the suspects were annotated in the DS approach, showing that it could only be used to detect compounds at high concentration levels. Using pure standards, the presence of diverse xenobiotics such as parabens, industrial chemicals (benzophenone-3, caprolactam and mono-2-ethyl-5-hydroxyhexyl phthalate) and chemicals related to daily habits (caffeine, cotinine or triclosan) was confirmed. Regarding enzymatic hydrolysis, only 10 parent compounds of the 44 glucuronides were successfully annotated in the hydrolysed samples. Therefore, the screening of metabolites in non-hydrolysed samples through SNTS is the most suitable approach for exposome characterization.


Subject(s)
Exposome , Xenobiotics , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Solid Phase Extraction/methods
16.
MethodsX ; 11: 102252, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37342804

ABSTRACT

This work describes the development of a robust analytical methodology for the simultaneous determination of 50 semi-volatile organic compounds (SVOCs) in wastewater effluent samples by solid-phase extraction (SPE) followed by gas chromatography coupled to mass spectrometry (GC-MS) analysis. In this work, we studied extensively whether the validated SPE method used for the analysis of polar compounds in wastewaters could be extended to the analysis of non-polar compounds in the same analytical run. To that aim, the effect of different organic solvents in the SPE process (i.e., sample conditioning prior to SPE, elution solvent and evaporation steps) was evaluated. In this sense, the addition of methanol to wastewater samples before the extraction, the use of hexane:toluene (4:1, v/v) mixture for the quantitative elution of target compounds, and the addition of isooctane during the evaporation were required to minimize analyte losses during SPE and enhance extraction yields. Overall, the developed methodology showed a good performance for the determination of 50 SVOCs, and was further applied to the analysis of real wastewater effluent samples.•A validated SPE method for polar compounds was extended to the analysis of non-polar compounds.•Elution with hex:tol (4:1, v/v) and the addition of isooctane during the evaporation yield good recoveries.•The developed methodology was suitable for the determination of 50 SVOCs in aqueous samples.

17.
Environ Int ; 181: 108288, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918065

ABSTRACT

A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.


Subject(s)
Environmental Monitoring , Fishes , Animals , Humans , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry , Chromatography, Liquid/methods , Mass Spectrometry/methods
18.
Anal Bioanal Chem ; 402(9): 2897-907, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22286125

ABSTRACT

Membrane-assisted solvent extraction coupled to large volume injection in a programmable temperature vaporisation injector using gas chromatography­mass spectrometry analysis was optimised for the simultaneous determination of a variety of endocrine disrupting compounds in environmental water samples (estuarine, river and wastewater). Among the analytes studied, certain hormones, alkylphenols and bisphenol A were included. The nature of membranes, extraction solvent, extraction temperature, solvent volume, extraction time, ionic strength and methanol addition were evaluated during the optimisation of the extraction. Matrix effects during the extraction step were studied in different environmental water samples: estuarine water, river water and wastewater (influent and effluent). Strong matrix effects were observed for most of the compounds in influent and effluent samples. Different approaches were studied in order to correct or minimise matrix effects, which included the use of deuterated analogues, matrix-matched calibration, standard addition calibration, dilution of the sample and clean-up of the extract using solid-phase extraction (SPE). The use of deuterated analogues corrected satisfactorily matrix effect for estuarine and effluent samples for most of the compounds. However, in the case of influent samples, standard addition calibration and dilution of the sample were the best approaches. The SPE clean-up provided similar recoveries to those obtained after correction with the corresponding deuterated analogue but better chromatographic signal was obtained in the case of effluent samples. Method detection limits in the 5-54 ng L(-1) range and precision, calculated as relative standard deviation, in the 2-25% range were obtained.


Subject(s)
Endocrine Disruptors/chemistry , Endocrine Disruptors/isolation & purification , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Extraction/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Gas Chromatography-Mass Spectrometry/instrumentation , Molecular Structure , Solid Phase Extraction/instrumentation
19.
Sci Total Environ ; 850: 157985, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35985602

ABSTRACT

An effect-directed analysis (EDA) approach was used to identify the compounds responsible for endocrine disruption in a hospital effluent (Basque Country). In order to facilitate the identification of the potentially toxic substances, a sample was collected using an automated onsite large volume solid phase extraction (LV-SPE) system. Then, it was fractionated with a two-step orthogonal chromatographic separation and tested for estrogenic effects with a recombinant yeast (A-YES) in-vitro bioassay. The fractionation method was optimized and validated for 184 compounds, and its application to the hospital effluent sample allowed reducing the number of unknowns from 292 in the raw sample to 35 after suspect analysis of the bioactive fractions. Among those, 7 of them were confirmed with chemical standards. In addition, target analysis of the raw sample confirmed the presence of mestranol, estrone and dodemorph in the fractions showing estrogenic activity. Predictive estrogenic activity modelling using quantitative structure-activity relationships indicated that the hormones mestranol (5840 ng/L) and estrone (128 ng/L), the plasticiser bisphenol A (9219 ng/L) and the preservative butylparaben (1224 ng/L) were the main contributors of the potential toxicity. Derived bioanalytical equivalents (BEQs) pointed mestranol and estrone as the main contributors (56 % and 43 %, respectively) of the 50 % of the sample's explained total estrogenic activity.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Environmental Monitoring/methods , Estrogens/analysis , Estrogens/toxicity , Estrone/analysis , Hospitals , Mestranol/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
20.
Anal Bioanal Chem ; 401(1): 339-52, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21598080

ABSTRACT

The analysis of organic pollutants in environmental water samples requires a pre-concentration step. Pre-concentration techniques such as stir bar sorptive extraction (SBSE) have gained popularity since they minimise the use of toxic organic solvents and can be considered as green analytical techniques. Similar to other pre-concentration techniques, one of the problems when SBSE is used is the matrix effect, which often occurs during the analysis of environmental water samples such as estuarine or wastewater samples. The present work studied the matrix effect during SBSE coupled to in-tube derivatisation-thermal desorption (TD)-gas chromatography-mass spectrometry for the determination of several endocrine disruptor compounds, such as alkylphenols, bisphenol A, estrogens and sterols, in environmental water samples, after optimisation of the major variables affecting the determination. Variables such as the addition of methanol or an inert salt to the donor phase, the extraction temperature, the volume of the donor phase, the stirring rate and the extraction time were studied during the SBSE optimisation. In the case of the in-tube derivatisation and TD step, the volume of the derivatisation reagent (N,O-bis(trimethylsilyl)triufloroacetamide with 1% of trimethylchlorosilane (BSTFA + 1% TMCS)) and the cryo-focusing temperature were fixed (2 µL and -50 °C, respectively) according to a consensus between maximum signal and optimal operation conditions. Good apparent recovery values (78-124%) were obtained for most of the analytes in Milli-Q water, except for 4-tert-octylphenol (4-tOP), which showed apparent recovery values exceeding 100%. Precision (n = 4) was in the 2-27%, and method detection limits were in the low nanogrammes per litre level for most of the analytes studied. The matrix effect was studied using two different approaches. On the one hand, Milli-Q water samples were spiked with humic acids, and apparent recovery values were studied with and without correction with the corresponding deuterated analogue. On the other hand, estuarine water and wastewater samples were spiked with known concentrations of target analytes, and apparent recoveries were studied as explained above. In general, the matrix effect could be corrected with the use of deuterated analogues, except for 4-tOP and nonylphenols for which [(2)H(4)]-n-nonylphenol did not provide good corrections.


Subject(s)
Endocrine Disruptors/analysis , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Extraction/instrumentation , Water Pollutants, Chemical/analysis , Water/analysis , Benzhydryl Compounds , Endocrine Disruptors/isolation & purification , Equipment Design , Estrogens/analysis , Estrogens/isolation & purification , Phenols/analysis , Phenols/isolation & purification , Sensitivity and Specificity , Sterols/analysis , Sterols/isolation & purification , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL