Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Mol Cancer Res ; 20(12): 1751-1762, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36001804

ABSTRACT

Cyclin D1 (CCND1) is a critical regulator of cell proliferation and its overexpression has been linked to the development and progression of several malignancies. CCND1 overexpression is recognized as a major mechanism of therapy resistance in several cancers; tumors that rely on CCND1 overexpression to evade cancer therapy are extremely sensitive to its ablation. Therefore, targeting CCND1 is a promising strategy for preventing tumor progression and combating therapy resistance in cancer patients. Although CCND1 itself is not a druggable target, it can be targeted indirectly by inhibiting its regulators. CCND1 steady-state levels are tightly regulated by ubiquitin-mediated degradation, and defects in CCND1 ubiquitination are associated with increased CCND1 protein levels in cancer. Here, we uncover a novel function of ubiquitin-specific protease 27X (USP27X), a deubiquitinating enzyme (DUB), in regulating CCND1 degradation in cancer. USP27X binds to and stabilizes CCND1 in a catalytically dependent manner by negatively regulating its ubiquitination. USP27X expression levels correlate with the levels of CCND1 in several HER2 therapy-resistant breast cancer cell lines, and its ablation leads to a severe reduction of CCND1 protein levels, inhibition of tumor growth, and resensitization to targeted therapy. Together, the results presented in our study are the first to expose USP27X as a major CCND1 deubiquitinase and provide a mechanistic explanation for how this DUB fosters tumor growth. IMPLICATIONS: As a deubiquitinating enzyme, USP27X is a druggable target. Our study illuminates new avenues for therapeutic intervention in CCND1-driven cancers.


Subject(s)
Breast Neoplasms , Cyclin D1 , Humans , Female , Cyclin D1/genetics , Cyclin D1/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Proteolysis , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL