Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biosensors (Basel) ; 11(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34436068

ABSTRACT

In the present paper, we describe a potassium sensor based on DNA-aptamer functionalized hydrogel, that is capable of continuous label-free potassium ion (K+) monitoring with potential for in situ application. A hydrogel attached to the end of an optical fiber is designed with di-oligonucleotides grafted to the polymer network that may serve as network junctions in addition to the covalent crosslinks. Specific affinity toward K+ is based on exploiting a particular aptamer that exhibits conformational transition from single-stranded DNA to G-quadruplex formed by the di-oligonucleotide in the presence of K+. Integration of this aptamer into the hydrogel transforms the K+ specific conformational transition to a K+ concentration dependent deswelling of the hydrogel. High-resolution interferometry monitors changes in extent of swelling at 1 Hz and 2 nm resolution for the hydrogel matrix of 50 µm. The developed hydrogel-based biosensor displayed high selectivity for K+ ions in the concentration range up to 10 mM, in the presence of physiological concentrations of Na+. Additionally, the concentration dependent and selective K+ detection demonstrated in the artificial blood buffer environment, both at room and physiological temperatures, suggests substantial potential for practical applications such as monitoring of potassium ion concentration in blood levels in intensive care medicine.


Subject(s)
Aptamers, Nucleotide , Fiber Optic Technology , Hydrogels , Biosensing Techniques , G-Quadruplexes , Humans , Interferometry , Ions , Optical Fibers , Potassium , Temperature
2.
Gels ; 6(3)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957423

ABSTRACT

Finite element modeling applied to analyze experimentally determined hydrogel swelling data provides quantitative description of the hydrogel in the aqueous solutions with well-defined ionic content and environmental parameters. In the present study, we expand this strategy to analysis of swelling of hydrogels over an extended concentration of salt where the Donnan contribution and specific ion effects are dominating at different regimes. Dynamics and equilibrium swelling were determined for acrylamide and cationic acrylamide-based hydrogels by high-resolution interferometry technique for step-wise increase in NaCl and NaBr concentration up to 2 M. Although increased hydrogel swelling volume with increasing salt concentration was the dominant trend for the uncharged hydrogel, the weakly charged cationic hydrogel was observed to shrink for increasing salt concentration up to 0.1 M, followed by swelling at higher salt concentrations. The initial shrinking is due to the ionic equilibration accounted for by a Donnan term. Comparison of the swelling responses at high NaCl and NaBr concentrations between the uncharged and the cationic hydrogel showed similar specific ion effects. This indicates that the ion non-specific Donnan contribution and specific ion effects are additive in the case where they are occurring in well separated ranges of salt concentration. We develop a novel finite element model including both these mechanisms to account for the observed swelling in aqueous salt solution. In particular, a salt-specific, concentration-dependent Flory-Huggins parameter was introduced for the specific ion effects. This is the first report on finite element modeling of hydrogels including specific ionic effects and underpins improvement of the mechanistic insight of hydrogel swelling that can be used to predict its response to environmental change.

SELECTION OF CITATIONS
SEARCH DETAIL