Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Org Biomol Chem ; 22(29): 5936-5947, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38973558

ABSTRACT

DNA aptamers are oligonucleotides that specifically bind to target molecules, similar to how antibodies bind to antigens. We identified an aptamer named MEZ that is highly specific to the receptor-binding domain, RBD, of the SARS-CoV-2 spike protein from the Wuhan-Hu-1 strain. The SELEX procedure was utilized to enrich the initial 31-mer oligonucleotide library with the target aptamer. The aptamer identification was performed using the novel protocol based on nanopore sequencing developed in this study. The MEZ aptamer was chemically synthesized and tested for binding with the SARS-CoV-2 RBD of the spike protein from different strains. The Kd is 6.5 nM for the complex with the RBD from the Wuhan-Hu-1 strain, which is comparable with known aptamers; the advantage is that the MEZ aptamer is smaller than known analogs. The proposed aptamer is highly selective for the RBD protein from the Wuhan-Hu-1 strain and does not form complexes with the RBD from Beta, Delta and Omicron strains. Experimental and theoretical studies together revealed the molecular mechanism of aptamer binding. The aptamer occupies the same binding site as ACE2 when bound to the RBD. The 3'-end of the MEZ aptamer is important for complex formation and is responsible for the discrimination of the RBD protein from a specific strain. The 5'-end is responsible for the formation of a loop in the 3D structure of the aptamer, which is important for proper binding.


Subject(s)
Aptamers, Nucleotide , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Aptamers, Nucleotide/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , Humans , SELEX Aptamer Technique , Protein Binding , COVID-19/virology , Binding Sites
2.
Biochemistry (Mosc) ; 89(Suppl 1): S234-S248, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38621753

ABSTRACT

This review highlights operational principles, features, and modern aspects of the development of third-generation sequencing technology of biopolymers focusing on the nucleic acids analysis, namely the nanopore sequencing system. Basics of the method and technical solutions used for its realization are considered, from the first works showing the possibility of creation of these systems to the easy-to-handle procedure developed by Oxford Nanopore Technologies company. Moreover, this review focuses on applications, which were developed and realized using equipment developed by the Oxford Nanopore Technologies, including assembly of whole genomes, methagenomics, direct analysis of the presence of modified bases.


Subject(s)
Nanopore Sequencing , Nanopores , Sequence Analysis, DNA/methods , Biopolymers , High-Throughput Nucleotide Sequencing/methods
3.
Biochemistry (Mosc) ; 88(Suppl 1): S21-S38, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37069112

ABSTRACT

The review describes the role of telomeres and telomerase in tumor progression, as well as various mechanisms of the activation of telomerase reverse transcriptase (TERT) expression in CNS tumors and other cancers. The main mechanism of TERT activation involves acquisition of somatic mutations by the TERT gene promoter (TERTp). The article presents information on the TERTp structure and transcription factors directly interacting with TERTp and regulating its transcription. The prospects of using the mutational status of TERTp as a prognostic marker of CNS malignancies and other tumors with a common profile of TERTp mutations are discussed.


Subject(s)
Brain Neoplasms , Promoter Regions, Genetic , Telomerase , Humans , Brain Neoplasms/genetics , Mutation , Prognosis , Telomerase/genetics , Transcription Factors/genetics
4.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674575

ABSTRACT

G-quadruplexes (G4s), the most widely studied alternative DNA structures, are implicated in the regulation of the key cellular processes. In recent years, their involvement in DNA repair machinery has become the subject of intense research. Here, we evaluated the effect of G4 on the prokaryotic DNA mismatch repair (MMR) pathway from two bacterial sources with different mismatch repair mechanisms. The G4 folding, which competes with the maintenance of double-stranded DNA, is known to be controlled by numerous opposing factors. To overcome the kinetic barrier of G4 formation, we stabilized a parallel G4 formed by the d(GGGT)4 sequence in a DNA plasmid lacking a fragment complementary to the G4 motif. Unlike commonly used isolated G4 structures, our plasmid with an embedded stable G4 structure contained elements, such as a MutH cleavage site, required to initiate the repair process. G4 formation in the designed construct was confirmed by Taq polymerase stop assay and dimethyl sulfate probing. The G4-carrying plasmid, together with control ones (lacking a looped area or containing unstructured d(GT)8 insert instead of the G4 motif), were used as new type models to answer the question of whether G4 formation interferes with DNA cleavage as a basic function of MMR.


Subject(s)
DNA Mismatch Repair , G-Quadruplexes , MutS DNA Mismatch-Binding Protein/metabolism , DNA/chemistry , Plasmids/genetics , DNA Repair
5.
Int J Mol Sci ; 23(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35008982

ABSTRACT

Nucleic acid aptamers specific to S-protein and its receptor binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2) virions are of high interest as potential inhibitors of viral infection and recognizing elements in biosensors. Development of specific therapy and biosensors is complicated by an emergence of new viral strains bearing amino acid substitutions and probable differences in glycosylation sites. Here, we studied affinity of a set of aptamers to two Wuhan-type RBD of S-protein expressed in Chinese hamster ovary cell line and Pichia pastoris that differ in glycosylation patterns. The expression system for the RBD protein has significant effects, both on values of dissociation constants and relative efficacy of the aptamer binding. We propose glycosylation of the RBD as the main force for observed differences. Moreover, affinity of a several aptamers was affected by a site of biotinylation. Thus, the robustness of modified aptamers toward new virus variants should be carefully tested.


Subject(s)
Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Immobilized Nucleic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , Binding Sites , CHO Cells , Cricetulus , Glycosylation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2 , Saccharomycetales/genetics
6.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955702

ABSTRACT

Nanopore sequencing (ONT) is a new and rapidly developing method for determining nucleotide sequences in DNA and RNA. It serves the ability to obtain long reads of thousands of nucleotides without assembly and amplification during sequencing compared to next-generation sequencing. Nanopore sequencing can help for determination of genetic changes leading to antibiotics resistance. This study presents the application of ONT technology in the assembly of an E. coli genome characterized by a deletion of the tolC gene and known single-nucleotide variations leading to antibiotic resistance, in the absence of a reference genome. We performed benchmark studies to determine minimum coverage depth to obtain a complete genome, depending on the quality of the ONT data. A comparison of existing programs was carried out. It was shown that the Flye program demonstrates plausible assembly results relative to others (Shasta, Canu, and Necat). The required coverage depth for successful assembly strongly depends on the size of reads. When using high-quality samples with an average read length of 8 Kbp or more, the coverage depth of 30× is sufficient to assemble the complete genome de novo and reliably determine single-nucleotide variations in it. For samples with shorter reads with mean lengths of 2 Kbp, a higher coverage depth of 50× is required. Avoiding of mechanical mixing is obligatory for samples preparation. Nanopore sequencing can be used alone to determine antibiotics-resistant genetic features of bacterial strains.


Subject(s)
Nanopore Sequencing , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
7.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430798

ABSTRACT

Bladder cancer (BC) is the 10th most common cancer in the world. While there are FDA-approved urinary assays to detect BC, none have demonstrated sufficient sensitivity and specificity to be integrated into clinical practice. Telomerase Reverse Transcriptase (TERT) gene mutations have been identified as the most common BC mutations that could potentially be used as non-invasive urinary biomarkers to detect BC. This study aims to evaluate the validity of these tests to detect BC in the Kerman province of Iran, where BC is the most common cancer in men. Urine samples of 31 patients with primary (n = 11) or recurrent (n = 20) bladder tumor and 50 controls were prospectively collected. Total urinary DNA was screened for the TERT promoter mutations (uTERTpm) by Droplet Digital PCR (ddPCR) assays. The performance characteristics of uTERTpm and the influence by disease stage and grade were compared to urine cytology results. The uTERTpm was 100% sensitive and 88% specific to detect primary BC, while it was 50% sensitive and 88% specific in detecting recurrent BC. The overall sensitivity and specificity of uTERTpm to detect bladder cancer were 67.7% and 88.0%, respectively, which were consistent across different tumor stages and grades. The most frequent uTERTpm mutations among BC cases were C228T (18/31), C250T (4/31), and C158A (1/31) with mutant allelic frequency (MAF) ranging from 0.2% to 63.3%. Urine cytology demonstrated a similar sensitivity (67.7%), but lower specificity (62.0%) than uTERTpm in detecting BC. Combined uTERTpm and urine cytology increased the sensitivity to 83.8%, but decreased the specificity to 52.0%. Our study demonstrated promising diagnostic accuracy for the uTERTpm as a non-invasive urinary biomarker to detect, in particular, primary BC in this population.


Subject(s)
Carcinoma, Transitional Cell , Telomerase , Urinary Bladder Neoplasms , Urologic Neoplasms , Male , Humans , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Telomerase/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/urine , Neoplasm Recurrence, Local/genetics , Carcinoma, Transitional Cell/pathology , Urologic Neoplasms/genetics , Mutation , DNA-Directed RNA Polymerases/genetics
8.
Molecules ; 27(8)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35458636

ABSTRACT

Covalent protein capture (cross-linking) by reactive DNA derivatives makes it possible to investigate structural features by fixing complexes at different stages of DNA-protein recognition. The most common cross-linking methods are based on reactive groups that interact with native or engineered cysteine residues. Nonetheless, high reactivity of most of such groups leads to preferential fixation of early-stage complexes or even non-selective cross-linking. We synthesised a set of DNA reagents carrying an acrylamide group attached to the C5 atom of a 2'-deoxyuridine moiety via various linkers and studied cross-linking with MutS as a model protein. MutS scans DNA for mismatches and damaged nucleobases and can form multiple non-specific complexes with DNA that may cause non-selective cross-linking. By varying the length of the linker between DNA and the acrylamide group and by changing the distance between the reactive nucleotide and a mismatch in the duplex, we showed that cross-linking occurs only if the distance between the acrylamide group and cysteine is optimal within the DNA-protein complex. Thus, acrylamide-modified DNA duplexes are excellent tools for studying DNA-protein interactions because of high selectivity of cysteine trapping.


Subject(s)
Cysteine , Escherichia coli Proteins , Acrylamide , Base Pair Mismatch , Cysteine/chemistry , DNA/chemistry , DNA Mismatch Repair , DNA Repair , Escherichia coli Proteins/metabolism , MutS DNA Mismatch-Binding Protein/chemistry , MutS DNA Mismatch-Binding Protein/metabolism , Proteins
9.
Nucleic Acids Res ; 46(17): 8966-8977, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30102362

ABSTRACT

Several studies have described functional peptides encoded in RNA that are considered to be noncoding. Telomerase RNA together with telomerase reverse transcriptase and regulatory proteins make up the telomerase complex, the major component of the telomere length-maintaining machinery. In contrast to protein subunits, telomerase RNA is expressed constitutively in most somatic cells where telomerase reverse transcriptase is absent. We show here that the transcript of human telomerase RNA codes a 121 amino acid protein (hTERP). The existence of hTERP was shown by immunoblotting, immunofluorescence microscopy and mass spectroscopy. Gain-of-function and loss-of-function experiments showed that hTERP protects cells from drug-induced apoptosis and participates in the processing of autophagosome. We suggest that hTERP regulates crosstalk between autophagy and apoptosis and is involved in cellular adaptation under stress conditions.


Subject(s)
Adaptation, Physiological/genetics , Apoptosis/genetics , Autophagy/genetics , RNA, Messenger/genetics , RNA/genetics , Telomerase/genetics , Telomere/metabolism , Amino Acid Sequence , Animals , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Cats , Cell Line, Tumor , Cloning, Molecular , Doxorubicin/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation , HEK293 Cells , Horses , Humans , Jurkat Cells , Mice , RNA/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Stress, Physiological , Telomerase/metabolism , Telomere/chemistry , Telomere Homeostasis
10.
Nucleic Acids Res ; 46(3): 1525-1540, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29294091

ABSTRACT

The elongation of single-stranded DNA repeats at the 3'-ends of chromosomes by telomerase is a key process in maintaining genome integrity in eukaryotes. Abnormal activation of telomerase leads to uncontrolled cell division, whereas its down-regulation is attributed to ageing and several pathologies related to early cell death. Telomerase function is based on the dynamic interactions of its catalytic subunit (TERT) with nucleic acids-telomerase RNA, telomeric DNA and the DNA/RNA heteroduplex. Here, we present the crystallographic and NMR structures of the N-terminal (TEN) domain of TERT from the thermotolerant yeast Hansenula polymorpha and demonstrate the structural conservation of the core motif in evolutionarily divergent organisms. We identify the TEN residues that are involved in interactions with the telomerase RNA and in the recognition of the 'fork' at the distal end of the DNA product/RNA template heteroduplex. We propose that the TEN domain assists telomerase biological function and is involved in restricting the size of the heteroduplex during telomere repeat synthesis.


Subject(s)
DNA, Fungal/chemistry , Fungal Proteins/chemistry , Nucleic Acid Heteroduplexes/chemistry , Pichia/enzymology , RNA, Fungal/chemistry , Telomerase/chemistry , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , DNA, Fungal/genetics , DNA, Fungal/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hot Temperature , Kinetics , Models, Molecular , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes/genetics , Nucleic Acid Heteroduplexes/metabolism , Pichia/genetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Fungal/genetics , RNA, Fungal/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Telomerase/genetics , Telomerase/metabolism
11.
Int J Mol Sci ; 21(17)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32839402

ABSTRACT

This review summarizes state-of-the-art knowledge in early-generation and novel urine biomarkers targeting the telomerase pathway for the detection and follow-up of bladder cancer (BC). The limitations of the assays detecting telomerase reactivation are discussed and the potential of transcription-activating mutations in the promoter of the TERT gene detected in the urine as promising simple non-invasive BC biomarkers is highlighted. Studies have shown good sensitivity and specificity of the urinary TERT promoter mutations in case-control studies and, more recently, in a pilot prospective cohort study, where the marker was detected up to 10 years prior to clinical diagnosis. However, large prospective cohort studies and intervention studies are required to fully validate their robustness and assess their clinical utility. Furthermore, it may be interesting to evaluate whether the clinical performance of urinary TERT promoter mutations could increase when combined with other simple urinary biomarkers. Finally, different approaches for assessment of TERT promoter mutations in urine samples are presented together with technical challenges, thus highlighting the need of careful technological validation and standardization of laboratory methods prior to translation into clinical practice.


Subject(s)
Adenocarcinoma/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Promoter Regions, Genetic , Telomerase/genetics , Urinary Bladder Neoplasms/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Base Sequence , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Case-Control Studies , Gene Expression , Humans , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Nucleic Acid Conformation , Prospective Studies , Telomerase/metabolism , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
12.
Int J Mol Sci ; 21(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233554

ABSTRACT

DNA mismatch repair (MMR) plays a crucial role in the maintenance of genomic stability. The main MMR protein, MutS, was recently shown to recognize the G-quadruplex (G4) DNA structures, which, along with regulatory functions, have a negative impact on genome integrity. Here, we studied the effect of G4 on the DNA-binding activity of MutS from Rhodobacter sphaeroides (methyl-independent MMR) in comparison with MutS from Escherichia coli (methyl-directed MMR) and evaluated the influence of a G4 on the functioning of other proteins involved in the initial steps of MMR. For this purpose, a new DNA construct was designed containing a biologically relevant intramolecular stable G4 structure flanked by double-stranded regions with the set of DNA sites required for MMR initiation. The secondary structure of this model was examined using NMR spectroscopy, chemical probing, fluorescent indicators, circular dichroism, and UV spectroscopy. The results unambiguously showed that the d(GGGT)4 motif, when embedded in a double-stranded context, adopts a G4 structure of a parallel topology. Despite strong binding affinities of MutS and MutL for a G4, the latter is not recognized by E. coli MMR as a signal for repair, but does not prevent MMR processing when a G4 and G/T mismatch are in close proximity.


Subject(s)
DNA Mismatch Repair , DNA, Bacterial/genetics , Escherichia coli/genetics , G-Quadruplexes , Genome, Bacterial , Rhodobacter sphaeroides/genetics , Binding Sites , DNA Breaks, Double-Stranded , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , MutL Proteins/genetics , MutL Proteins/metabolism , MutS DNA Mismatch-Binding Protein/genetics , MutS DNA Mismatch-Binding Protein/metabolism , Nucleotide Motifs , Protein Binding , Rhodobacter sphaeroides/metabolism
13.
BMC Genomics ; 18(1): 492, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28659185

ABSTRACT

BACKGROUND: In the course of replication of eukaryotic chromosomes, the telomere length is maintained due to activity of telomerase, the ribonucleoprotein reverse transcriptase. Abolishing telomerase function causes progressive shortening of telomeres and, ultimately, cell cycle arrest and replicative senescence. To better understand the cellular response to telomerase deficiency, we performed a transcriptomic study for the thermotolerant methylotrophic yeast Hansenula polymorpha DL-1 lacking telomerase activity. RESULTS: Mutant strain of H. polymorpha carrying a disrupted telomerase RNA gene was produced, grown to senescence and analyzed by RNA-seq along with wild type strain. Telomere shortening induced a transcriptional response involving genes relevant to telomere structure and maintenance, DNA damage response, information processing, and some metabolic pathways. Genes involved in DNA replication and repair, response to environmental stresses and intracellular traffic were up-regulated in senescent H. polymorpha cells, while strong down-regulation was observed for genes involved in transcription and translation, as well as core histones. CONCLUSIONS: Comparison of the telomerase deletion transcription responses by Saccharomyces cerevisiae and H. polymorpha demonstrates that senescence makes different impact on the main metabolic pathways of these yeast species but induces similar changes in processes related to nucleic acids metabolism and protein synthesis. Up-regulation of a subunit of the TORC1 complex is clearly relevant for both types of yeast.


Subject(s)
Genomics , Pichia/enzymology , Pichia/genetics , Telomerase/deficiency , Thermotolerance , Transcription, Genetic , Autophagy/genetics , Carbohydrate Metabolism/genetics , DNA Damage/genetics , Energy Metabolism/genetics , Environment , Genes, Fungal/genetics , Intracellular Space/metabolism , Pichia/cytology , Pichia/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stress, Physiological/genetics , Telomere Shortening/genetics
14.
J Mol Recognit ; 29(6): 242-7, 2016 06.
Article in English | MEDLINE | ID: mdl-26669798

ABSTRACT

Telomerase is a key component of the telomere length maintenance system in the majority of eukaryotes. Telomerase displays maximal activity in stem and cancer cells with high proliferative potential. In humans, telomerase activity is regulated by various mechanisms, including the interaction with telomere ssDNA overhangs that contain a repetitive G-rich sequence, and with noncoding RNA, Telomeric repeat-containing RNA (TERRA), that contains the same sequence. So these nucleic acids can compete for telomerase RNA templates in the cell. In this study, we have investigated the ability of different model substrates mimicking telomere DNA overhangs and TERRA RNA to compete for telomerase in vitro through a previously developed telomerase inhibitor assay. We have shown in this study that RNA oligonucleotides are better competitors for telomerase that DNA ones as RNA also use an alternative binding site on telomerase, and the presence of 2'-OH groups is significant in these interactions. In contrast to DNA, the possibility of forming intramolecular G-quadruplex structures has a minor effect for RNA binding to telomerase. Taking together our data, we propose that TERRA RNA binds better to telomerase compared with its native substrate - the 3'-end of telomere DNA overhang. As a result, some specific factor may exist that participates in switching telomerase from TERRA to the 3'-end of DNA for telomere elongation at the distinct period of a cell cycle in vivo. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Oligonucleotides/chemistry , Oligonucleotides/metabolism , Telomerase/chemistry , Telomerase/metabolism , Binding Sites , Circular Dichroism , DNA, Single-Stranded/chemistry , G-Quadruplexes , Humans , In Vitro Techniques , Protein Binding , RNA, Long Noncoding/chemistry
15.
Nucleic Acids Res ; 42(15): 9531-42, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25081209

ABSTRACT

Telomerase is a key participant in the telomere length maintaining system in eukaryotic cells. Telomerase RNA and protein reverse transcriptase subunits are essential for the appearance of active telomerase in vitro. Telomerase is active in many cancer types and is a potential target for anticancer drug development. Here we report a new approach for impairing telomerase function at the stage of human telomerase assembly. The approach is based on the application of chimeric bifunctional oligonucleotides that contain two oligonucleotide parts complementary to the functional domains of telomerase RNA connected with non-nucleotide linkers in different orientations (5'-3', 5'-5' or 3'-3'). Such chimeras inhibited telomerase in vitro in the nM range, but were effective in vivo in sub-nM concentrations, predominantly due to their effect on telomerase assembly and dimerization.


Subject(s)
Oligonucleotides/chemistry , Telomerase/antagonists & inhibitors , Dimerization , HEK293 Cells , Humans , RNA/chemistry , RNA/metabolism , Telomerase/chemistry , Telomerase/metabolism
16.
RNA ; 19(11): 1563-74, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24046481

ABSTRACT

Telomerase, a ribonucleoprotein, is responsible for the maintenance of eukaryotic genome integrity by replicating the ends of chromosomes. The core enzyme comprises the conserved protein TERT and an RNA subunit (TER) that, in contrast, displays large variations in size and structure. Here, we report the identification of the telomerase RNA from thermotolerant yeast Hansenula polymorpha (HpTER) and describe its structural features. We show further that the H. polymorpha telomerase reverse transcribes the template beyond the predicted boundary and adds a nontelomeric dT in vitro. Sequencing of the chromosomal ends revealed that this nucleotide is specifically present as a terminal nucleotide at the 3' end of telomeres. Mutational analysis of HpTER confirmed that the incorporation of dT functions to limit telomere length in this species.


Subject(s)
Pichia/genetics , RNA/genetics , Telomerase/genetics , Telomere Homeostasis , Base Sequence , Gene Knockout Techniques , Molecular Sequence Data , Nucleic Acid Conformation , RNA/chemistry , RNA/metabolism , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/metabolism , Sequence Analysis, RNA , Telomerase/chemistry , Telomerase/metabolism , Thymine
17.
Microbiol Resour Announc ; 13(3): e0089923, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38385669

ABSTRACT

Whole-genome sequence of ET2 strain, isolated from the roots of leafless orchid, constitutes a single circular chromosome of 3,604,840 bp (69.44% G + C content). BLAST+-based average nucleotide identity (ANIb) and digital DNA-DNA hybridization values indicate that ET2 may be a novel Microbacterium species. Genes putatively involved in plant-microbial interactions were predicted.

18.
BMC Genomics ; 14: 837, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24279325

ABSTRACT

BACKGROUND: Hansenula polymorpha DL1 is a methylotrophic yeast, widely used in fundamental studies of methanol metabolism, peroxisome biogenesis and function, and also as a microbial cell factory for production of recombinant proteins and metabolic engineering towards the goal of high temperature ethanol production. RESULTS: We have sequenced the 9 Mbp H. polymorpha DL1 genome and performed whole-genome analysis for the H. polymorpha transcriptome obtained from both methanol- and glucose-grown cells. RNA-seq analysis revealed the complex and dynamic character of the H. polymorpha transcriptome under the two studied conditions, identified abundant and highly unregulated expression of 40% of the genome in methanol grown cells, and revealed alternative splicing events. We have identified subtelomerically biased protein families in H. polymorpha, clusters of LTR elements at G + C-poor chromosomal loci in the middle of each of the seven H. polymorpha chromosomes, and established the evolutionary position of H. polymorpha DL1 within a separate yeast clade together with the methylotrophic yeast Pichia pastoris and the non-methylotrophic yeast Dekkera bruxellensis. Intergenome comparisons uncovered extensive gene order reshuffling between the three yeast genomes. Phylogenetic analyses enabled us to reveal patterns of evolution of methylotrophy in yeasts and filamentous fungi. CONCLUSIONS: Our results open new opportunities for in-depth understanding of many aspects of H. polymorpha life cycle, physiology and metabolism as well as genome evolution in methylotrophic yeasts and may lead to novel improvements toward the application of H. polymorpha DL-1 as a microbial cell factory.


Subject(s)
Genome, Fungal , Saccharomycetales/genetics , Alternative Splicing , Antioxidants/metabolism , Chromosomes, Fungal , Cluster Analysis , Codon , DNA Transposable Elements , Evolution, Molecular , Fatty Acids/metabolism , Gene Duplication , Gene Expression Profiling , Genes, Fungal , Glucose/metabolism , Metabolic Networks and Pathways , Methanol/metabolism , Molecular Sequence Annotation , Multigene Family , Oxidation-Reduction , Pentose Phosphate Pathway , Peroxisomes/metabolism , Phylogeny , RNA Splice Sites , Saccharomycetales/classification , Saccharomycetales/metabolism , Sequence Analysis, DNA , Telomere/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
19.
Biomedicines ; 11(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36831030

ABSTRACT

Recent whole-genome sequencing studies identified two novel recurrent mutations in the enhancer region of GPR126 in urothelial bladder cancer (UBC) tumor samples. This mutational hotspot is the second most common after the TERT promoter in UBC. The aim of the study was to develop a digital droplet PCR screening assay for the simultaneous detection of GPR126 mutations in a single tube. Its performance combined with TERT promoter mutation analysis was evaluated in urine of healthy volunteers (n = 50) and patients with cystitis (n = 22) and UBC (n = 70). The developed assay was validated using DNA constructs carrying the studied variants. None of the mutations were detected in control and cystitis group samples. GPR126 mutations were observed in the urine of 25/70 UBC patients (area under the ROC curve (AUC) of 0.679; mutant allele fraction (MAF) of 21.61 [8.30-44.52] %); TERT mutations-in 40/70 (AUC of 0.786; MAF = 28.29 [19.03-38.08] %); ≥1 mutation-in 47/70 (AUC of 0.836)). The simultaneous presence of GPR126 and TERT mutations was observed in 18/70 cases, with no difference in MAFs for the paired samples (31.96 [14.78-47.49] % vs. 27.13 [17.00-37.62] %, p = 0.349, respectively). The combined analysis of these common non-coding mutations in urine allows the sensitive and non-invasive detection of UBC.

20.
Life (Basel) ; 13(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37511853

ABSTRACT

Somatic mutations in the promoter region of the human telomerase reverse transcriptase (hTERT) gene have been identified in many types of cancer. The hTERT promoter is known to be enriched with sequences that enable the formation of G-quadruplex (G4) structures, whose presence is associated with elevated mutagenicity and genome instability. Here, we used a bioinformatics tool (QGRS mapper) to search for G4-forming sequences (G4 motifs) in the 1000 bp TERT promoter regions of 141 mammalian species belonging to 20 orders, 5 of which, including primates and predators, contain more than 10 species. Groups of conserved G4 motifs and single-nucleotide variants within these groups were discovered using a block alignment approach (based on the Nucleotide PanGenome explorer). It has been shown that: (i) G4 motifs are predominantly located in the region proximal to the transcription start site (up to 400 bp) and are over-represented on the non-coding strand of the TERT promoters, (ii) 11 to 22% of the G4 motifs found are evolutionarily conserved across the related organisms, and (iii) a statistically significant higher frequency of nucleotide substitutions in the conserved G4 motifs compared to the surrounding regions was confirmed only for the order Primates. These data support the assumption that G4s can interfere with the DNA repair process and affect the evolutionary adaptation of organisms and species.

SELECTION OF CITATIONS
SEARCH DETAIL