Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
BMC Cancer ; 21(1): 744, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34182958

ABSTRACT

BACKGROUND: Increased bone turnover is frequently observed in advanced cancer and predominantly related to bone metastases or therapy. Cachexia represents an important cause of morbidity and mortality in cancer patients. Key features are weight loss, muscle wasting and chronic inflammation, which induce profound metabolic changes in several organs, including the bone. However, whether cachexia contributes to abnormal bone metabolism in cancer patients is unknown. Aim of the present study was to determine the potential correlation of bone turnover markers with body composition and laboratory parameters in treatment-naïve cancer patients. METHODS: In this cross-sectional study we measured the levels of carboxy terminal telopeptide of collagen (CTX), an indicator of bone resorption, as well as osteocalcin (Ocn) and procollagen type I N-terminal propeptide (PINP), indicators of bone formation, in 52 cancer patients and correlated with body composition and laboratory parameters. Univariate and multivariate logistic analysis were performed to identify determinants of negative bone remodeling balance, estimated by CTX/Ocn and CTX/PINP ratio. RESULTS: Based on weight loss, body mass index and muscle mass, patients were divided into a cachectic (59.6%) and a control (40.4%) group. After correcting for the presence of bone metastases, our results showed a significant upregulation of CTX in cachectic patients compared to non-cachectic cancer patients (median 0.38 vs 0.27 ng/mL, p < 0.05), with no difference in Ocn and PINP levels (mean 14 vs. 16 ng/ml, p = 0.2 and median 32 vs. 26 µg/L, p = 0.5, respectively). In addition, the CTX/Ocn and the CTX/PINP ratio were indicative of bone resorption in 68% and 60% of cachexia patients, respectively (vs. 20% and 31% in the control group, p = 0.002 and p = 0.06). The main determinants of the unbalanced bone turnover were hypoalbuminemia for the CTX/Ocn ratio (OR 19.8, p < 0.01) and high CRP for the CTX/PINP ratio (OR 5.3, p < 0.01) in the multivariate regression analysis. CONCLUSIONS: CTX is substantially higher in cachectic patients compared to non-cachectic oncological patients and hypoalbuminemia as well as elevated CRP concentrations are independent predictors of a negative bone remodeling balance in cancer patients. These results strongly indicate that cachexia correlates with exacerbated bone turnover in cancer.


Subject(s)
Bone Remodeling/physiology , Cachexia/complications , Neoplasms/complications , Case-Control Studies , Cross-Sectional Studies , Humans , Male , Middle Aged , Neoplasms/pathology
2.
Int J Mol Sci ; 18(7)2017 07 11.
Article in English | MEDLINE | ID: mdl-28696356

ABSTRACT

Osteoarthritis (OA) is hallmarked by a progressive degradation of articular cartilage. Besides risk factors including trauma, obesity or genetic predisposition, inflammation has a major impact on the development of this chronic disease. During the course of inflammation, cytokines such as tumor necrosis factor-alpha(TNF-α) and interleukin (IL)-1ß are secreted by activated chondrocytes as well as synovial cells and stimulate the production of other inflammatory cytokines and matrix degrading enzymes. The mTORC1 inhibitor rapamycin is a clinical approved immunosuppressant and several studies also verified its chondroprotective effects in OA. However, the effect of blocking the mechanistic target of rapamycin complex (mTORC)1 on the inflammatory status within OA is not well studied. Therefore, we aimed to investigate if inhibition of mTORC1 by rapamycin can preserve and sustain chondrocytes in an inflammatory environment. Patient-derived chondrocytes were cultured in media supplemented with or without the mTORC1 inhibitor rapamycin. To establish an inflammatory environment, either TNF-α or IL-1ß was added to the media (=OA-model). The chondroprotective and anti-inflammatory effects of rapamycin were evaluated using sulfated glycosaminoglycan (sGAG) release assay, Caspase 3/7 activity assay, lactate dehydrogenase (LDH) assay and quantitative real time polymerase chain reaction (PCR). Blocking mTORC1 by rapamycin reduced the release and therefore degradation of sGAGs, which are components of the extracellular matrix secreted by chondrocytes. Furthermore, blocking mTORC1 in OA chondrocytes resulted in an enhanced expression of the main chondrogenic markers. Rapamycin was able to protect chondrocytes from cell death in an OA-model shown by reduced Caspase 3/7 activity and diminished LDH release. Furthermore, inhibition of mTORC1 preserved the chondrogenic phenotype of OA chondrocytes, but also reduced inflammatory processes within the OA-model. This study highlights that blocking mTORC1 is a new and promising approach for treating OA. Low side effects make rapamycin an attractive implementation to existing therapeutic strategies. We showed that rapamycin's chondroprotective property might be due to an interference with IL-1ß triggered inflammatory processes.


Subject(s)
Chondrocytes/drug effects , Cytokines/pharmacology , Sirolimus/pharmacology , Caspase 3/metabolism , Caspase 7/metabolism , Cells, Cultured , Collagen Type I/metabolism , Glycosaminoglycans/metabolism , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Immunohistochemistry , L-Lactate Dehydrogenase/metabolism , Osteoarthritis/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Knee Surg Sports Traumatol Arthrosc ; 23(1): 104-11, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25377190

ABSTRACT

PURPOSE: The treatment of cartilage defects with matrix-embedded autologous chondrocytes is a promising method to support the repair process and to foster reconstitution of full functionality of the joint. METHODS: Human osteoarthritic chondrocytes were harvest from nine different patients (mean ± SD age 68 ± 8 years) who underwent total knee replacement. The chondrocytes were embedded after a precultivation phase into a collagen I hydrogel. Mid-term intermitted mechanostimulation on matrix-embedded dedifferentiated human osteoarthritic chondrocytes was performed by intermittently applying a cyclic sinusoid compression regime for 4 days (cycles of 1 h of sinusoidal stimulation (1 Hz) and 4 h of break; maximum compression 2.5%). Stimulated (Flex) and non-stimulated (No Flex) cell matrix constructs were analysed concerning the expression of genes involved in tissue metabolism, the content of sulphated glycosaminoglycans (sGAG) and the morphology of the chondrocytes. RESULTS: Gene expression analysis showed a high significant increase in collagen type II expression (p < 0.001), a significant increase in aggrecan expression (p < 0.04) and a high significant decrease in MMP-13 expression (p < 0.001) under stimulation condition compared with unstimulated controls. No significant changes were found in the gene expression rate of MMP-3. This positive effect of the mechanostimulation was confirmed by the analyses of sGAG. Mechanically stimulated cell-matrix constructs had nearly tripled sGAG content than the non-stimulated control (p < 0.002). In addition, histological examination showed that morphology of chondrocytes was altered from a spindle-shaped to a chondrocyte-characteristic rounded phenotype. CONCLUSION: Mid-term intermitted mechanical stimulation in vitro has the potential to improve the cell quality of cell matrix constructs prepared from dedifferentiated osteoarthritic chondrocytes. This observation may extend the inclusion criteria for matrix-assisted autologous chondrocyte implantation (MACI) and confirms the importance of moderate dynamic compression in clinical rehabilitation after MACI.


Subject(s)
Chondrocytes/cytology , Mechanotransduction, Cellular , Osteoarthritis, Knee/pathology , Tissue Engineering/methods , Aged , Aggrecans/metabolism , Chondrocytes/transplantation , Collagen/metabolism , Collagen Type II/metabolism , Female , Gene Expression , Glycosaminoglycans/metabolism , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate , Male , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 3/metabolism , Middle Aged , Phenotype , Tissue Scaffolds , Transplantation, Autologous
4.
Electrophoresis ; 34(24): 3315-25, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24115093

ABSTRACT

Liver cancer typically occurs with a background of chronic fibrosis, characterized by the accumulation of myofibroblast-like cells. We performed 2D-PAGE-based comparative analyses with the aim to identify proteins expressed in human hepatocellular carcinoma (HCC) tissue but not in neighboring healthy liver tissue, and to make out which cell types are responsible for the expression of proteins most characteristic for HCC. LC-MS/MS analysis of the most striking spots identified proteins that were mainly related to myofibroblast-like cells. To gain more insights into the role of these cells in their contribution to HCC, we isolated myofibroblast-like cells as well as hepatocytes, both derived from HCC tissues, and subjected them to proteome profiling based on shotgun experiments. Comparative analysis, also referring to proteome profiles of other cell types previously investigated by us, pointed again to a marked contribution of myofibroblast-like cells to HCC. Intriguingly, secretome analysis of these cells identified several growth factors that may act as tumor promoters and several proteins that have been described as potential biomarkers for HCC including dickkopf-1, connective tissue growth factor, and CXCL1. Other biomarker candidates presently identified in the secretome of myofibroblasts, including lipocalin-1 and pappalysin-1, may be selected for future clinical validation. The identification of myofibroblast-like cells as important source of tumor-promoters may open new avenues to therapeutic intervention by targeting these stroma cells in addition to the cancer cells.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Myofibroblasts/metabolism , Proteome/analysis , Biomarkers, Tumor/analysis , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/chemistry , Electrophoresis, Gel, Two-Dimensional , Humans , Liver/chemistry , Liver Neoplasms/chemistry , Proteome/chemistry , Proteome/metabolism , Tumor Cells, Cultured
5.
J Proteome Res ; 9(1): 6-21, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19678649

ABSTRACT

Hepatocytes are known to express a large number of characteristic proteins. Transformed and cultured hepatocytes only partially maintain functional cell differentiation characteristics, which can be assessed by proteome profiling. Here, we applied 2D-PAGE analysis in addition to shotgun proteomics to assess the functional cell state of primary human hepatocytes (PHH), HepG2 and Hep3B cells. Out of a total of 1995 proteins identified in the cytoplasm of these cells, we filtered 107 proteins which are characteristic for hepatocytes. A total of 104 of those were identified in primary human hepatocytes, 20 in HepG2, and only 6 in Hep3B. Forty-six out of 72 proteins identified in the secretome of PHH, 55 out of 139 in HepG2, and only 24 out of 72 in Hep3B were plasma proteins characteristic for hepatocytes. Beside other biomarker candidates presently identified, 11 proteins of the HepG2 secretome have been described previously as biomarkers for hepatocellular carcinoma. Because of indications that epithelial to mesenchymal transition (EMT) may have occurred in the cultured hepatoma cells, we included the analysis of fibroblasts representative for mesenchymal cells. Hep3B, but not HepG2, secreted five proteins including follistatin-related protein 1 which are characteristic for mesenchymal cells and may be marker proteins for EMT. Our data demonstrate that HepG2 show more features characteristic for hepatocytes than Hep3B, while Hep3B express more mesenchymal proteins indicative for EMT. Proteome profiling thus proved to enable comprehensive assessment of functional cell states and cell differentiation states of cultured hepatocytes and enabled the identification of numerous biomarkers for hepatocellular carcinoma and EMT.


Subject(s)
Hepatocytes/chemistry , Liver Neoplasms/chemistry , Proteome/analysis , Blotting, Western , Cell Line, Tumor , Cells, Cultured , Cytoplasm/metabolism , Electrophoresis, Gel, Two-Dimensional , Hepatocytes/metabolism , Humans , Liver Neoplasms/metabolism , Mass Spectrometry , Peptide Mapping/methods , Proteome/metabolism , Reproducibility of Results , alpha-Fetoproteins/metabolism
6.
Front Oncol ; 10: 1262, 2020.
Article in English | MEDLINE | ID: mdl-32850383

ABSTRACT

Cancer cachexia is characterized by the impairment of glucose and lipid homeostasis, the acceleration of processes promoting the mobilization of energy-rich compounds (e.g., insulin resistance, gluconeogenesis, and lipolysis) and the simultaneous activation of highly energy-demanding processes (e.g., systemic inflammation and activation of brown adipose tissue). We hypothesized that these processes might themselves change during cancer cachexia progression, such that plasma levels of glucose and lipids might be used to distinguish between the non-malignant state, pre-cachexia and cachexia. We performed an initial cross-sectional study including 60 treatment naïve cancer patients (38 with cancer cachexia and 22 with cancer pre-cachexia) and 61 patients without malignancy (21 with metabolic syndrome and 40 controls). Differences in lipids (total cholesterol, LDL and HDL cholesterol) and plasma fasting glucose were analyzed across various group configurations, with adjustments to age and antidiabetic or lipid-lowering drugs. Our study showed that levels of LDL cholesterol and total cholesterol might indicate cachexia stages irrespective of the presence of metabolic syndrome or lipid-lowering medication. High levels of plasma glucose were only seen in cachectic cancer patients on antidiabetics. These observations indicate that markers of metabolic dysregulation associated with cachexia progression might be exploited for early detection of malignancy.

7.
Electrophoresis ; 30(12): 2076-89, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19582709

ABSTRACT

Interpretation of proteome data with a focus on biomarker discovery largely relies on comparative proteome analyses. Here, we introduce a database-assisted interpretation strategy based on proteome profiles of primary cells. Both 2-D-PAGE and shotgun proteomics are applied. We obtain high data concordance with these two different techniques. When applying mass analysis of tryptic spot digests from 2-D gels of cytoplasmic fractions, we typically identify several hundred proteins. Using the same protein fractions, we usually identify more than thousand proteins by shotgun proteomics. The data consistency obtained when comparing these independent data sets exceeds 99% of the proteins identified in the 2-D gels. Many characteristic differences in protein expression of different cells can thus be independently confirmed. Our self-designed SQL database (CPL/MUW - database of the Clinical Proteomics Laboratories at the Medical University of Vienna accessible via www.meduniwien.ac.at/proteomics/database) facilitates (i) quality management of protein identification data, which are based on MS, (ii) the detection of cell type-specific proteins and (iii) of molecular signatures of specific functional cell states. Here, we demonstrate, how the interpretation of proteome profiles obtained from human liver tissue and hepatocellular carcinoma tissue is assisted by the Clinical Proteomics Laboratories at the Medical University of Vienna-database. Therefore, we suggest that the use of reference experiments supported by a tailored database may substantially facilitate data interpretation of proteome profiling experiments.


Subject(s)
Databases, Protein , Liver Neoplasms/metabolism , Liver/metabolism , Proteome/analysis , Proteomics/methods , Access to Information , Biomarkers/analysis , Database Management Systems , Electrophoresis, Gel, Two-Dimensional , Endothelial Cells/metabolism , Histocytochemistry , Humans , Information Storage and Retrieval , Kupffer Cells/metabolism , Peptide Mapping , Quality Control , User-Computer Interface
8.
Front Oncol ; 9: 1409, 2019.
Article in English | MEDLINE | ID: mdl-31921666

ABSTRACT

In this paper, we present evidence in support of our hypothesis that the neuronal histaminergic system might be involved in cancer cachexia. To build our premise, we present the research and the reasonable inferences that can be drawn from it in a section by section approach starting from one of the key issues related to cachexia, increased resting energy expenditure (REE), and progressing to the other, anorexia. Based on an extensive survey of the literature and our own deliberations on the abovementioned topics, we investigate whether histamine signaling might be the mechanism used by a tumor to hijack the body's thermogenic machinery. Our hypothesis in short is that hypothalamic histaminergic neurons are stimulated by inputs from the parasympathetic nervous system (PSNS), which senses tumor traits early in cancer development. Histamine release in the preoptic area of the hypothalamus primarily activates brown adipose tissue (BAT), triggering a highly energy demanding mechanism. Chronic activation of BAT, which, in this context, refers to intermittent and/or low grade activation by the sympathetic nervous system, leads to browning of white adipose tissue and further enhances thermogenic potential. Aberrant histamine signaling not only triggers energy-consuming processes, but also anorexia. Moreover, since functions such as taste, smell, and sleep are governed by discrete structures of the brain, which are targeted by distinct histaminergic neuron populations even relatively minor symptoms of cachexia, such as sleep disturbances and taste and smell distortions, also might be ascribed to aberrant histamine signaling. In late stage cachexia, the sympathetic tone in skeletal muscle breaks down, which we hypothesize might be caused by a reduction in histamine signaling or by the interference of other cachexia related mechanisms. Histamine signaling thus might delineate distinct stages of cachexia progression, with the early phase marked by a PSNS-mediated increase in histamine signaling, increased sympathetic tone and symptomatic adipose tissue depletion, and the late phase characterized by reduced histamine signaling, decreased sympathetic tone and symptomatic muscle wasting. To support our hypothesis, we review the literature from across disciplines and highlight the many commonalities between the mechanisms underlying cancer cachexia and current research findings on the regulation of energy homeostasis (particularly as it relates to hypothalamic histamine signaling). Extrapolating from the current body of knowledge, we develop our hypothetical framework (based on experimentally falsifiable assumptions) about the role of a distinct neuron population in the pathophysiology of cancer cachexia. Our hope is that presenting our ideas will spark discussion about the pathophysiology of cachexia, cancer's devastating and intractable syndrome.

9.
Cartilage ; 8(2): 191-198, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28345415

ABSTRACT

Objective The purpose of the current study was to compare the donor age variation of chondrocytes from non-OA (osteoarthritic) trauma joints in patients of young to middle age (20.5 ± 3.7, 31.8 ± 1.9, 41.9 ± 4.1 years) embedded in matrix-associated autologous chondrocyte transplantation (MACT) grafts (CaReS). The chondrocyte-specific gene expression of CaReS grafts were then compared to chondrocytes from OA joints (in patients aged 63.8 ± 10 years) embedded in a collagen type I hydrogel. Design OA chondrocytes and articular chondrocyte-laden grafts were cultured over 14 days in chondrogenic growth medium. We performed reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) to evaluate the mRNA expression levels of chondrocyte-specific and hypertrophic markers. Results Gene expression analysis with RT-qPCR revealed no significant difference in chondrocyte-specific genes ( COL2A1, ACAN, SOX9, SOX5, SOX6) among 3 different age group of patients with CaReS grafts. In a comparative analysis of OA chondrocytes to articular chondrocytes, chondrogenic markers ( COL2A1, SOX6) exhibited higher expression in OA chondrocytes ( P < 0.05). Hypertrophic or OA cartilage pathogenesis marker ( MMP3, MMP13) expression was higher and COL1A1 had significantly lower expression ( P < 0.05) in OA chondrocytes than articular chondrocytes when cultivated in collagen type I hydrogels. Conclusion In summary, we identify that donor age variation does not influence the chondrogenic gene expression of the CaReS system. We also identified that freshly isolated OA chondrocytes embedded in collagen type I hydrogels can exhibit chondrogenic gene expression as observed in articular chondrocytes on the CaReS grafts. Transforming OA chondrocytes to articular chondrocytes can be regarded as an alternative option in the MACT technique.

10.
Leuk Lymphoma ; 57(9): 2065-70, 2016 09.
Article in English | MEDLINE | ID: mdl-26901249

ABSTRACT

The aim of this retrospective study was to evaluate the efficacy and toxicity profile of bendamustine, bortezomib, and dexamethasone (BBD) combination treatment of patients with newly diagnosed multiple myeloma (MM). BBD treatment had a response rate of 80% regarding patients with ≥ partial response (PR). Median time to best response was 87.5 days and PFS was 22 months. Median of OS was not reached. PFS of non-responding patients was significantly shortened compared to those with ≥ PR. No statistically significant differences were determined concerning age (≥ vs. < 68 years) and ISS stage (ISS stage I/II vs. III). Grade 3 hematological effects and grade 3/4 non-hematological effects occurred in 20% and 35% of patients, respectively. Most pronounced hematological adverse event was leukopenia, the most severe non-hematological ones affected the cardiovascular system. In summary, BBD treatment was of acceptable efficacy in patients with newly diagnosed MM and exhibited rather low toxicity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Multiple Myeloma/drug therapy , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bendamustine Hydrochloride/administration & dosage , Biomarkers , Bortezomib/administration & dosage , Dexamethasone/administration & dosage , Female , Humans , Male , Middle Aged , Multiple Myeloma/diagnosis , Multiple Myeloma/mortality , Neoplasm Staging , Retrospective Studies , Survival Analysis , Treatment Outcome
11.
Cartilage ; 7(2): 185-92, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27047641

ABSTRACT

OBJECTIVE: Matrix-assisted autologous chondrocyte implantation is frequently applied to replace damaged cartilage in order to support tissue regeneration or repair and to prevent progressive cartilage degradation and osteoarthritis. Its application, however, is limited to primary defects and contraindicated in the case of osteoarthritis that is partially ascribed to dedifferentiation and phenotype alterations of chondrocytes obtainable from patients' biopsies. The differentiation state of chondrocytes is reflected at the level of structural gene (COL2A1, ACAN, COL1A1) and transcription factor (SOX9, 5, 6) expression. METHODS/DESIGN: We determined the mRNA abundances of COL2A1, ACAN, and COL1A1as well as SOX9, -5, and -6 of freshly isolated and passaged collagen I implant-derived and osteoarthritic chondrocytes via reverse transcription-polymerase chain reaction. Moreover, we analyzed the correlation of structural and transcription factor gene expression. Thus, we were able to evaluate the impact of the mRNA levels of transcription factors on the expression of cartilage-specific structural genes. RESULTS: Significant differences were obtained (1) for freshly isolated osteoarthritic versus collagen I implant-derived chondrocytes, (2) due to passaging of the respective cell sources, (3) for osteoarthritic versus nonosteoarthritic chondrocytes, and (4) for COL2A1 versus ACAN expression with respect to the coherence with SOX9, -5, and -6 transcript levels. CONCLUSION: Our results might contribute to a better understanding of the transcriptional regulation of structural gene expression of chondrocytes with implications for their use in matrix-assisted autologous chondrocyte implantation.

12.
Cartilage ; 7(3): 265-73, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27375842

ABSTRACT

PURPOSE: An important feature of biomaterials used in cartilage regeneration is their influence on the establishment and stabilization of a chondrocytic phenotype of embedded cells. The purpose of this study was to examine the effects of a porous 3-dimensional scaffold made of cross-linked hyaluronic acid on the expression and synthesis performance of human articular chondrocytes. MATERIALS AND METHODS: Osteoarthritic chondrocytes from 5 patients with a mean age of 74 years were passaged twice and cultured within the cross-linked hyaluronic acid scaffolds for 2 weeks. Analyses were performed at 3 different time points. For estimation of cell content within the scaffold, DNA-content (CyQuant cell proliferation assay) was determined. The expression of chondrocyte-specific genes by embedded cells as well as the total amount of sulfated glycosaminoglycans produced during the culture period was analyzed in order to characterize the synthesis performance and differentiation status of the cells. RESULTS: Cells showed a homogenous distribution within the scaffold. DNA quantification revealed a reduction of the cell number. This might be attributed to loss of cells from the scaffold during media exchange connected with a stop in cell proliferation. Indeed, the expression of cartilage-specific genes and the production of sulfated glycosaminoglycans were increased and the differentiation index was clearly improved. CONCLUSIONS: These results suggest that the attachment of osteoarthritic P2 chondrocytes to the investigated material enhanced the chondrogenic phenotype as well as promoted the retention.

13.
Stem Cells Transl Med ; 5(5): 580-90, 2016 May.
Article in English | MEDLINE | ID: mdl-27025692

ABSTRACT

UNLABELLED: Amniotic fluid stem (AFS) cells represent a major source of donor cells for cartilage repair. Recently, it became clear that mammalian target of rapamycin (mTOR) inhibition has beneficial effects on cartilage homeostasis, but the effect of mTOR on chondrogenic differentiation is still elusive. Therefore, the objectives of this study were to investigate the effects of mammalian target of rapamycin complex 1 (mTORC1) modulation on the expression of SOX9 and on its downstream targets during chondrogenic differentiation of AFS cells. We performed three-dimensional pellet culturing of AFS cells and of in vitro-expanded, human-derived chondrocytes in the presence of chondrogenic factors. Inhibition of mTORC1 by rapamycin or by small interfering RNA-mediated targeting of raptor (gene name, RPTOR) led to increased AKT activation, upregulation of hypoxia inducible factor (HIF) 2A, and an increase in SOX9, COL2A1, and ACAN abundance. Here we show that HIF2A expression is essential for chondrogenic differentiation and that AKT activity regulates HIF2A amounts. Importantly, engraftment of AFS cells in cell pellets composed of human chondrocytes revealed an advantage of raptor knockdown cells compared with control cells in their ability to express SOX9. Our results demonstrate that mTORC1 inhibition leads to AKT activation and an increase in HIF2A expression. Therefore, we suggest that mTORC1 inhibition is a powerful tool for enhancing chondrogenic differentiation of AFS cells and also of in vitro-expanded adult chondrocytes before transplantation. SIGNIFICANCE: Repair of cartilage defects is still an unresolved issue in regenerative medicine. Results of this study showed that inhibition of the mammalian target of rapamycin complex 1 (mTORC1) pathway, by rapamycin or by small interfering RNA-mediated targeting of raptor (gene name, RPTOR), enhanced amniotic fluid stem cell differentiation toward a chondrocytic phenotype and increased their engrafting efficiency into cartilaginous structures. Moreover, freshly isolated and in vitro passaged human chondrocytes also showed redifferentiation upon mTORC1 inhibition during culturing. Therefore, this study revealed that rapamycin could enable a more efficient clinical use of cell-based therapy approaches to treat articular cartilage defects.


Subject(s)
Amniotic Fluid/cytology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/drug effects , Chondrocytes/drug effects , Chondrogenesis/drug effects , Multipotent Stem Cells/drug effects , Sirolimus/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aggrecans/genetics , Aggrecans/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cells, Cultured , Chondrocytes/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Enzyme Activation , Female , Gene Expression Regulation, Developmental/drug effects , Humans , Mechanistic Target of Rapamycin Complex 1 , Multipotent Stem Cells/metabolism , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/metabolism , Phenotype , Pregnancy , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Regulatory-Associated Protein of mTOR , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Transfection , Up-Regulation
14.
Stem Cell Rev Rep ; 8(4): 1267-74, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22869300

ABSTRACT

Chronic articular cartilage defects are the most common disabling conditions of humans in the western world. The incidence for cartilage defects is increasing with age and the most prominent risk factors are overweight and sports associated overloading. Damage of articular cartilage frequently leads to osteoarthritis due to the aneural and avascular nature of articular cartilage, which impairs regeneration and repair. Hence, patients affected by cartilage defects will benefit from a cell-based transplantation strategy. Autologous chondrocytes, mesenchymal stem cells and embryonic stem cells are suitable donor cells for regeneration approaches and most recently the discovery of amniotic fluid stem cells has opened a plethora of new therapeutic options. It is the aim of this review to summarize recent advances in the use of amniotic fluid stem cells as novel cell sources for the treatment of articular cartilage defects. Molecular aspects of articular cartilage formation as well as degeneration are summarized and the role of growth factor triggered signaling pathways, scaffolds, hypoxia and autophagy during the process of chondrogenic differentiation are discussed.


Subject(s)
Amniotic Fluid/cytology , Cartilage Diseases/therapy , Cell Differentiation , Chondrogenesis , Stem Cell Transplantation , Stem Cells/cytology , Amniotic Fluid/metabolism , Animals , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Humans , Regenerative Medicine/methods , Stem Cells/metabolism , Transplantation, Homologous
15.
Cartilage ; 1(3): 194-9, 2010 Jul.
Article in English | MEDLINE | ID: mdl-26069551

ABSTRACT

OBJECTIVE: The treatment of cartilage defects with matrix-embedded autologous chondrocytes is a promising method to support the repair process. In this study we gathered quality parameters of collagen I matrices and embedded autologous chondrocytes at the time of transplantation We determined number, morphology, and distribution of matrix-embedded chondrocytes as well as their synthesis performance concerning sulphated glycosaminoglycans (sGAG) and collagen 1A1 and 2A1 mRNA levels. RESULTS: Chondrocytes were equidistantly distributed in the collagen matrices, and cell numbers ranged from 6 to 34 × 10(4) cells/g wet weight. Significant amounts of sGAG were detected in all of the investigated transplants but did not correlate with the number of cells within the respective transplants. Moreover, collagen I mRNA levels exceeded that of collagen II up to 17-fold. Collagen I and II ratio and sGAG amounts indicated significant interindividual differences of chondrocytes. The variation of transplant-associated sGAG levels could be attributed to the differential biosynthesis performance of chondrocytes. CONCLUSIONS: These results confirm the vitality and the chondrocytic phenotype of matrix-embedded cells (CaRes(®)) with respect to sGAG synthesis. However, chondrocytes showed collagen I mRNA expression partially far exceeding that of collagen II, indicating a rather dedifferentiated cellular status. In addition, sGAG synthesis performance of different patients' chondrocytes varied significantly. Nevertheless, a 2-year clinical study of chondrocyte-seeded collagen matrices as investigated in this work delivered promising results. However, future studies are planned to determine markers for the regenerative potential of donor chondrocytes.

16.
ALTEX ; 27(2): 97-103, 2010.
Article in English | MEDLINE | ID: mdl-20686742

ABSTRACT

Bone grafting is commonly used to treat large bone defects. Since autografts are limited and frequently associated with postoperative donor morbidity, allografts from bone banks are often used. However, vascularisation of the allograft is often impaired, resulting in inadequate bone healing and functional graft failure. In bone bank processing, tissue is stored at -80 degree Celsius and subsequently subjected to a harsh multi-step cleaning and sterilisation procedure to prevent immune rejection or transmission of diseases. To determine which step of this procedure diminishes the ability of allografts to induce or promote vascularisation, we used the chick chorioallantoic membrane (CAM) model to monitor the vascular reaction to sample bone chips representing the respective procedural steps. The CAM model monitors the angiogenic potency of xenogeneic and, hence, potentially immunogeneic materials (e.g. cells, tissues, tissue-engineered matrices). Due to the chicken embryo's lack of a fully functional immune system, it provides test conditions that are analogous to immunologically incompetent mice and is a well-suited alternative to their use. Bone chips were placed onto the CAM, and vascular reactions were quantified by image analysis after 48 h incubation. The vascular reaction was most pronounced to fresh, untreated bone chips that had been kept at +2 degree Celsius prior to the experiment. Surprisingly, storage of bone samples at -80 degree Celsius was sufficient to drastically reduce the vascular reaction. Consistent with this, samples representing different stages of the subsequent procedure showed similarly low vascular indices.


Subject(s)
Bone Banks , Bone Transplantation/methods , Bone and Bones/physiology , Chorioallantoic Membrane/physiology , Neovascularization, Physiologic/physiology , Animals , Chick Embryo , Freezing , Humans , Organ Culture Techniques/methods , Specimen Handling
17.
Electrophoresis ; 27(13): 2712-21, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16817157

ABSTRACT

Proteome profiling techniques rely on the separation of proteins or peptides and their subsequent quantification. The reliability of this technique is still limited because a proteome profiling result does not necessarily represent the true protein composition of the analysed sample, thus seriously hampering proper data interpretation. Many experimentally observed proteome alterations are biologically not significant. It was the aim of this study to use the knowledge of the biological context of proteins in order to establish optimised proteome profiling protocols. While 2-D spot patterns of total cell protein fractions were found to poorly represent the true protein composition, purified subcellular protein fractions were found to better represent the protein composition of the analysed sample. The application of a standardised protocol to different kinds of cells revealed several striking observations. Firstly, the protein composition of cultured cells of various origins is very similar. Secondly, proteome alterations observed with the described protocols do make sense from a biologic point of view and may thus be considered as truly representative for the analysed samples. Thirdly, primary white blood cells isolated from different donors were found to show minor, but reproducible and significant individual differences. We designate the consideration of known properties of identified proteins in proteome profiles as a knowledge-based approach. The present data suggest that this approach may tremendously help to improve the applied techniques and assess the results. We demonstrate that the fulfilment of well-defined criteria of proteome profiles eventually results in reliable and biologically relevant data.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/standards , Knowledge Bases , Proteins/analysis , Proteome/analysis , Amino Acid Sequence , Cytoplasm/chemistry , Humans , Jurkat Cells , Molecular Sequence Data , Reproducibility of Results
18.
Electrophoresis ; 26(14): 2779-85, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15966010

ABSTRACT

The secretome of cells and tissues may reflect a broad variety of pathological conditions and thus represents a rich source of biomarkers. The identity of secreted proteins, usually isolated from cell supernatants or body fluids, is hardly accessible by direct proteome analysis, because these proteins are often masked by high amounts of proteins actually not secreted by the investigated cells. Here, we present a novel method for the specific detection of proteins secreted by human tissue specimen as well as cultured cells and chose liver as a model. The method is based on the metabolic labelling of proteins synthesized during a limited incubation period. Then, the cell supernatant is filtered, precipitated, and subjected to two-dimensional gel electrophoresis. Whereas fluorography detected a large number of proteins derived from residual plasma and dead cells, the autoradiographs selectively displayed genuinely secreted proteins. We demonstrate the feasibility of this approach by means of the secretomes of the hepatocellular carcinoma-derived cell line HepG2 and human liver slices. The selective identification of cell- and tissue-specific protein secretion profiles may help to identify novel sets of biomarkers for wide clinical applications.


Subject(s)
Proteins/metabolism , Proteome/metabolism , Proteomics/methods , Amino Acid Sequence , Hepatocytes/metabolism , Humans , Liver/metabolism , Molecular Sequence Data , Proteins/analysis , Proteome/analysis
19.
J Virol ; 77(9): 5360-9, 2003 May.
Article in English | MEDLINE | ID: mdl-12692238

ABSTRACT

Using several approaches, we investigated the importance of clathrin-mediated endocytosis in the uptake of human rhinovirus serotype 2 (HRV2). By means of confocal immunofluorescence microscopy, we show that K(+) depletion strongly reduces HRV2 internalization. Viral uptake was also substantially reduced by extraction of cholesterol from the plasma membrane with methyl-beta-cyclodextrin, which can inhibit clathrin-mediated endocytosis. In accordance with these data, overexpression of dynamin K44A in HeLa cells prevented HRV2 internalization, as judged by confocal immunofluorescence microscopy, and strongly reduced infection. We also demonstrate that HRV2 bound to the surface of HeLa cells is localized in coated pits but not in caveolae. Finally, transient overexpression of the specific dominant-negative inhibitors of clathrin-mediated endocytosis, the SH3 domain of amphiphysin and the C-terminal domain of AP180, potently inhibited internalization of HRV2. Taken together, these results indicate that HRV2 uses clathrin-mediated endocytosis to infect cells.


Subject(s)
Clathrin/metabolism , Endocytosis , Rhinovirus/pathogenicity , Animals , Cholesterol/metabolism , Dynamins/metabolism , HeLa Cells , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Monomeric Clathrin Assembly Proteins/pharmacology , Nerve Tissue Proteins/pharmacology , Potassium/metabolism , Rhinovirus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL