Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Cell ; 166(2): 273-274, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27419865

ABSTRACT

A study finds that deficits in touch-sensing somatosensory neurons contribute to social interaction and anxiety phenotypes in mouse models of autism and Rett syndrome. These findings suggest that some core symptoms of autism might originate from aberrant development or function of the peripheral nervous system.


Subject(s)
Autistic Disorder/genetics , Methyl-CpG-Binding Protein 2/genetics , Animals , Disease Models, Animal , Mice , Rett Syndrome/genetics , Touch
2.
Cell ; 162(4): 795-807, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26255772

ABSTRACT

Deletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS), while duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region outside of the catalytic domain at residue T485 and inhibits UBE3A activity toward itself and other substrates. A de novo autism-linked missense mutation disrupts this phosphorylation site, causing enhanced UBE3A activity in vitro, enhanced substrate turnover in patient-derived cells, and excessive dendritic spine development in the brain. Our study identifies PKA as an upstream regulator of UBE3A activity and shows that an autism-linked mutation disrupts this phosphorylation control. Moreover, our findings implicate excessive UBE3A activity and the resulting synaptic dysfunction to autism pathogenesis.


Subject(s)
Angelman Syndrome/genetics , Autistic Disorder/genetics , Mutation, Missense , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Angelman Syndrome/metabolism , Animals , Autistic Disorder/metabolism , Brain/pathology , Cyclic AMP-Dependent Protein Kinases/metabolism , Dendritic Spines/pathology , Embryo, Mammalian/metabolism , Enzyme Stability , Female , Humans , Mice, Inbred C57BL , Mutagenesis , Phosphorylation , Ubiquitin-Protein Ligases/metabolism
3.
Mol Cell ; 75(3): 523-537.e10, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31256989

ABSTRACT

Long noncoding RNAs (lncRNAs) cause Polycomb repressive complexes (PRCs) to spread over broad regions of the mammalian genome. We report that in mouse trophoblast stem cells, the Airn and Kcnq1ot1 lncRNAs induce PRC-dependent chromatin modifications over multi-megabase domains. Throughout the Airn-targeted domain, the extent of PRC-dependent modification correlated with intra-nuclear distance to the Airn locus, preexisting genome architecture, and the abundance of Airn itself. Specific CpG islands (CGIs) displayed characteristics indicating that they nucleate the spread of PRCs upon exposure to Airn. Chromatin environments surrounding Xist, Airn, and Kcnq1ot1 suggest common mechanisms of PRC engagement and spreading. Our data indicate that lncRNA potency can be tightly linked to lncRNA abundance and that within lncRNA-targeted domains, PRCs are recruited to CGIs via lncRNA-independent mechanisms. We propose that CGIs that autonomously recruit PRCs interact with lncRNAs and their associated proteins through three-dimensional space to nucleate the spread of PRCs in lncRNA-targeted domains.


Subject(s)
RNA, Long Noncoding/genetics , Animals , Chromatin/genetics , Chromatin Assembly and Disassembly , CpG Islands/genetics , Genome/genetics , Genomic Imprinting/genetics , Humans , Mice , Polycomb Repressive Complex 1/genetics , Promoter Regions, Genetic , Stem Cells/metabolism , Trophoblasts/metabolism
4.
Nature ; 587(7833): 281-284, 2020 11.
Article in English | MEDLINE | ID: mdl-33087932

ABSTRACT

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by a mutation or deletion of the maternally inherited UBE3A allele. In neurons, the paternally inherited UBE3A allele is silenced in cis by a long non-coding RNA called UBE3A-ATS. Here, as part of a systematic screen, we found that Cas9 can be used to activate ('unsilence') paternal Ube3a in cultured mouse and human neurons when targeted to Snord115 genes, which are small nucleolar RNAs that are clustered in the 3' region of Ube3a-ATS. A short Cas9 variant and guide RNA that target about 75 Snord115 genes were packaged into an adeno-associated virus and administered to a mouse model of AS during the embryonic and early postnatal stages, when the therapeutic benefit of restoring Ube3a is predicted to be greatest1,2. This early treatment unsilenced paternal Ube3a throughout the brain for at least 17 months and rescued anatomical and behavioural phenotypes in AS mice. Genomic integration of the adeno-associated virus vector into Cas9 target sites caused premature termination of Ube3a-ATS at the vector-derived polyA cassette, or when integrated in the reverse orientation, by transcriptional collision with the vector-derived Cas9 transcript. Our study shows that targeted genomic integration of a gene therapy vector can restore the function of paternally inherited UBE3A throughout life, providing a path towards a disease-modifying treatment for a syndromic neurodevelopmental disorder.


Subject(s)
Angelman Syndrome/genetics , Angelman Syndrome/therapy , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Editing , Genetic Therapy/methods , RNA, Long Noncoding/genetics , Ubiquitin-Protein Ligases/genetics , Animals , CRISPR-Associated Protein 9/genetics , Dependovirus/genetics , Disease Models, Animal , Female , Gene Silencing , Genetic Vectors/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Nervous System/metabolism , Paternal Inheritance/genetics , Phenotype , RNA, Guide, Kinetoplastida/genetics
5.
Environ Sci Technol ; 57(36): 13429-13438, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37642336

ABSTRACT

The rubber antioxidant 6PPD has gained significant attention due to its highly toxic transformation product, 6PPD-quinone (6PPDQ). Despite their detection in urines of pregnant women, the placental transfer and developmental toxicity of 6PPD and 6PPDQ are unknown. Here, we treated C57Bl/6 mice with 4 mg/kg 6PPD or 6PPDQ to investigate their urine excretion and placental transfer. Female and male mice exhibited sex difference in excretion profiles of 6PPD and 6PPDQ. Urine concentrations of 6PPDQ were one order of magnitude lower than those of 6PPD, suggesting lower excretion and higher bioaccumulation of 6PPDQ. In pregnant mice treated with 6PPD or 6PPDQ from embryonic day 11.5 to 15.5, 6PPDQ showed ∼1.5-8 times higher concentrations than 6PPD in placenta, embryo body, and embryo brain, suggesting higher placental transfer of 6PPDQ. Using in vitro dual-luciferase reporter assays, we revealed that 6PPDQ activated the human retinoic acid receptor α (RARα) and retinoid X receptor α (RXRα) at concentrations as low as 0.3 µM, which was ∼10-fold higher than the concentrations detected in human urines. 6PPD activated the RXRα at concentrations as low as 1.2 µM. These results demonstrate the exposure risks of 6PPD and 6PPDQ during pregnancy and emphasize the need for further toxicological and epidemiological investigations.


Subject(s)
Benzoquinones , Embryonic Development , Phenylenediamines , Animals , Female , Humans , Male , Mice , Pregnancy , Benzoquinones/metabolism , Benzoquinones/toxicity , Benzoquinones/urine , Placenta/metabolism , Phenylenediamines/metabolism , Phenylenediamines/toxicity , Phenylenediamines/urine , Mice, Inbred C57BL , Tissue Distribution , Sex Factors , Embryonic Development/drug effects , HEK293 Cells , Retinoic Acid Receptor alpha/metabolism , Retinoid X Receptor alpha/metabolism
6.
Biochemistry ; 61(24): 2806-2821, 2022 12 20.
Article in English | MEDLINE | ID: mdl-34910469

ABSTRACT

In recent years, a substantial amount of data have supported an active role of gut microbiota in mediating mammalian brain function and health. Mining gut microbiota and their metabolites for neuroprotection is enticing but requires that the fundamental biochemical details underlying such microbiota-brain crosstalk be deciphered. While a neuronal gut-brain axis (through the vagus nerve) is not disputable, accumulating studies also point to a humoral route (via blood/lymphatic circulation) by which innumerable microbial molecular cues translocate from local gut epithelia to circulation with potentials to further cross the blood-brain barrier and reach the brain. In this Perspective, we review a realm of gut microbial molecules to evaluate their fate, function, and neuroactivities in vivo as mediated by microbiota. We turn to seminal studies of neurophysiology and neurologic disease models for the elucidation of biochemical pathways that link microbiota to gut-brain signaling. In addition, we discuss opportunities and challenges for advancing the microbiota-brain axis field while calling for high-throughput discovery of microbial molecules and studies for resolving the interspecies, interorgan, and interclass interaction among these neuroactive microbial molecules.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Humans , Gastrointestinal Microbiome/physiology , Brain-Gut Axis , Microbiota/physiology , Brain/metabolism , Blood-Brain Barrier , Mammals
8.
Nature ; 501(7465): 58-62, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-23995680

ABSTRACT

Topoisomerases are expressed throughout the developing and adult brain and are mutated in some individuals with autism spectrum disorder (ASD). However, how topoisomerases are mechanistically connected to ASD is unknown. Here we find that topotecan, a topoisomerase 1 (TOP1) inhibitor, dose-dependently reduces the expression of extremely long genes in mouse and human neurons, including nearly all genes that are longer than 200 kilobases. Expression of long genes is also reduced after knockdown of Top1 or Top2b in neurons, highlighting that both enzymes are required for full expression of long genes. By mapping RNA polymerase II density genome-wide in neurons, we found that this length-dependent effect on gene expression was due to impaired transcription elongation. Interestingly, many high-confidence ASD candidate genes are exceptionally long and were reduced in expression after TOP1 inhibition. Our findings suggest that chemicals and genetic mutations that impair topoisomerases could commonly contribute to ASD and other neurodevelopmental disorders.


Subject(s)
Autistic Disorder/genetics , DNA Topoisomerases, Type I/metabolism , Transcription Elongation, Genetic , Animals , DNA Topoisomerases, Type I/deficiency , DNA Topoisomerases, Type II/deficiency , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Gene Knockdown Techniques , Genomic Imprinting/genetics , Humans , Mice , Mutation/genetics , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II/metabolism , Synapses/metabolism , Topoisomerase Inhibitors/pharmacology , Topotecan/pharmacology , Transcription Elongation, Genetic/drug effects
9.
J Neurosci ; 37(42): 10230-10239, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28931574

ABSTRACT

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by mutation or deletion of the maternal UBE3A allele. The maternal UBE3A allele is expressed in nearly all neurons of the brain and spinal cord, whereas the paternal UBE3A allele is repressed by an extremely long antisense transcript (UBE3A-ATS). Little is known about expression of UBE3A in the peripheral nervous system, where loss of maternal UBE3A might contribute to AS phenotypes. Here we sought to examine maternal and paternal Ube3a expression in DRGs neurons and to evaluate whether nociceptive responses were affected in AS model mice (global deletion of maternal Ube3a allele; Ube3am-/p+). We found that most large-diameter proprioceptive and mechanosensitive DRG neurons expressed maternal Ube3a and paternal Ube3a-ATS In contrast, most small-diameter neurons expressed Ube3a biallelically and had low to undetectable levels of Ube3a-ATS Analysis of single-cell DRG transcriptomes further suggested that Ube3a is expressed monoallelically in myelinated large-diameter neurons and biallelically in unmyelinated small-diameter neurons. Behavioral responses to some noxious thermal and mechanical stimuli were enhanced in male and female AS model mice; however, nociceptive responses were not altered by the conditional deletion of maternal Ube3a in the DRG. These data suggest that the enhanced nociceptive responses in AS model mice are due to loss of maternal Ube3a in the central, but not peripheral, nervous system. Our study provides new insights into sensory processing deficits associated with AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss or mutation of the maternal UBE3A allele. While sensory processing deficits are frequently associated with AS, it is currently unknown whether Ube3a is expressed in peripheral sensory neurons or whether maternal deletion of Ube3a affects somatosensory responses. Here, we found that Ube3a is primarily expressed from the maternally inherited allele in myelinated large-diameter sensory neurons and biallelically expressed in unmyelinated small-diameter neurons. Nociceptive responses to select noxious thermal and mechanical stimuli were enhanced following global, but not sensory neuron-specific, deletion of maternal Ube3a in mice. These data suggest that maternal loss of Ube3a affects nociception via a central, but not peripheral mechanism, with implications for AS.


Subject(s)
Angelman Syndrome/genetics , Angelman Syndrome/pathology , Disease Models, Animal , Pain Measurement/methods , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Animals , Female , Ganglia, Spinal/pathology , Ganglia, Spinal/physiology , Male , Mice , Mice, Knockout , Spinal Cord/pathology , Spinal Cord/physiology
10.
J Biol Chem ; 292(30): 12503-12515, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28559284

ABSTRACT

UBE3A is a HECT domain E3 ubiquitin ligase whose dysfunction is linked to autism, Angelman syndrome, and cancer. Recently, we characterized a de novo autism-linked UBE3A mutant (UBE3AT485A) that disrupts phosphorylation control of UBE3A activity. Through quantitative proteomics and reporter assays, we found that the UBE3AT485A protein ubiquitinates multiple proteasome subunits, reduces proteasome subunit abundance and activity, stabilizes nuclear ß-catenin, and stimulates canonical Wnt signaling more effectively than wild-type UBE3A. We also found that UBE3AT485A activates Wnt signaling to a greater extent in cells with low levels of ongoing Wnt signaling, suggesting that cells with low basal Wnt activity are particularly vulnerable to UBE3AT485A mutation. Ligase-dead UBE3A did not stimulate Wnt pathway activation. Overexpression of several proteasome subunits reversed the effect of UBE3AT485A on Wnt signaling. We also observed that subunits that interact with UBE3A and affect Wnt signaling are located along one side of the 19S regulatory particle, indicating a previously unrecognized spatial organization to the proteasome. Altogether, our findings indicate that UBE3A regulates Wnt signaling in a cell context-dependent manner and that an autism-linked mutation exacerbates these signaling effects. Our study has broad implications for human disorders associated with UBE3A gain or loss of function and suggests that dysfunctional UBE3A might affect additional proteins and pathways that are sensitive to proteasome activity.


Subject(s)
Autistic Disorder/metabolism , Mutation , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , HEK293 Cells , Humans , Proteasome Endopeptidase Complex/genetics
11.
Mol Pain ; 14: 1744806918763658, 2018.
Article in English | MEDLINE | ID: mdl-29546805

ABSTRACT

Grimace scales quantify characteristic facial expressions associated with spontaneous pain in rodents and other mammals. However, these scales have not been widely adopted largely because of the time and effort required for highly trained humans to manually score the images. Convoluted neural networks were recently developed that distinguish individual humans and objects in images. Here, we trained one of these networks, the InceptionV3 convolutional neural net, with a large set of human-scored mouse images. Output consists of a binary pain/no-pain assessment and a confidence score. Our automated Mouse Grimace Scale integrates these two outputs and is highly accurate (94%) at assessing the presence of pain in mice across different experimental assays. In addition, we used a novel set of "pain" and "no pain" images to show that automated Mouse Grimace Scale scores are highly correlated with human scores (Pearson's r = 0.75). Moreover, the automated Mouse Grimace Scale classified a greater proportion of images as "pain" following laparotomy surgery when compared to animals receiving a sham surgery or a post-surgical analgesic. Together, these findings suggest that the automated Mouse Grimace Scale can eliminate the need for tedious human scoring of images and provide an objective and rapid way to quantify spontaneous pain and pain relief in mice.


Subject(s)
Facial Expression , Nerve Net/physiopathology , Pain/diagnosis , Pain/physiopathology , Animals , Automation , Humans , Mice , Postoperative Care , Video Recording
12.
Nature ; 481(7380): 185-9, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22190039

ABSTRACT

Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.


Subject(s)
Alleles , Gene Silencing/drug effects , Neurons/drug effects , Neurons/metabolism , Topoisomerase Inhibitors/pharmacology , Ubiquitin-Protein Ligases/genetics , Angelman Syndrome/drug therapy , Angelman Syndrome/genetics , Animals , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Drug Evaluation, Preclinical , Fathers , Female , Genomic Imprinting/drug effects , Genomic Imprinting/genetics , Male , Mice , Mice, Inbred C57BL , Mothers , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Topoisomerase Inhibitors/administration & dosage , Topoisomerase Inhibitors/analysis , Topoisomerase Inhibitors/pharmacokinetics , Topotecan/administration & dosage , Topotecan/pharmacokinetics , Topotecan/pharmacology , Ubiquitin-Protein Ligases/deficiency
13.
Proc Natl Acad Sci U S A ; 111(48): 17290-5, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25404338

ABSTRACT

Topotecan is a topoisomerase 1 (TOP1) inhibitor that is used to treat various forms of cancer. We recently found that topotecan reduces the expression of multiple long genes, including many neuronal genes linked to synapses and autism. However, whether topotecan alters synaptic protein levels and synapse function is currently unknown. Here we report that in primary cortical neurons, topotecan depleted synaptic proteins that are encoded by extremely long genes, including Neurexin-1, Neuroligin-1, Cntnap2, and GABA(A)ß3. Topotecan also suppressed spontaneous network activity without affecting resting membrane potential, action potential threshold, or neuron health. Topotecan strongly suppressed inhibitory neurotransmission via pre- and postsynaptic mechanisms and reduced excitatory neurotransmission. The effects on synaptic protein levels and inhibitory neurotransmission were fully reversible upon drug washout. Collectively, our findings suggest that TOP1 controls the levels of multiple synaptic proteins and is required for normal excitatory and inhibitory synaptic transmission.


Subject(s)
DNA Topoisomerases, Type I/metabolism , Excitatory Postsynaptic Potentials/drug effects , Neurons/drug effects , Synapses/drug effects , Topotecan/pharmacology , Action Potentials/drug effects , Animals , Calcium-Binding Proteins , Cell Adhesion Molecules, Neuronal/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Excitatory Postsynaptic Potentials/physiology , Female , Immunoblotting , Mice, Inbred C57BL , Microscopy, Fluorescence , Neural Cell Adhesion Molecules/metabolism , Neurons/metabolism , Neurons/physiology , Patch-Clamp Techniques , Synapses/physiology , Topoisomerase I Inhibitors/pharmacology
14.
J Neurosci ; 35(40): 13587-98, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26446213

ABSTRACT

Individuals with Angelman syndrome (AS) suffer sleep disturbances that severely impair quality of life. Whether these disturbances arise from sleep or circadian clock dysfunction is currently unknown. Here, we explored the mechanistic basis for these sleep disorders in a mouse model of Angelman syndrome (Ube3a(m-/p+) mice). Genetic deletion of the maternal Ube3a allele practically eliminates UBE3A protein from the brain of Ube3a(m-/p+) mice, because the paternal allele is epigenetically silenced in most neurons. However, we found that UBE3A protein was present in many neurons of the suprachiasmatic nucleus--the site of the mammalian circadian clock--indicating that Ube3a can be expressed from both parental alleles in this brain region in adult mice. We found that while Ube3a(m-/p+) mice maintained relatively normal circadian rhythms of behavior and light-resetting, these mice exhibited consolidated locomotor activity and skipped the timed rest period (siesta) present in wild-type (Ube3a(m+/p+)) mice. Electroencephalographic analysis revealed that alterations in sleep regulation were responsible for these overt changes in activity. Specifically, Ube3a(m-/p+) mice have a markedly reduced capacity to accumulate sleep pressure, both during their active period and in response to forced sleep deprivation. Thus, our data indicate that the siesta is governed by sleep pressure, and that Ube3a is an important regulator of sleep homeostasis. These preclinical findings suggest that therapeutic interventions that target mechanisms of sleep homeostasis may improve sleep quality in individuals with AS. SIGNIFICANCE STATEMENT: Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by loss of expression of the maternal copy of the UBE3A gene. Individuals with AS have severe sleep dysfunction that affects their cognition and presents challenges to their caregivers. Unfortunately, current treatment strategies have limited efficacy due to a poor understanding of the mechanisms underlying sleep disruptions in AS. Here we demonstrate that abnormal sleep patterns arise from a deficit in accumulation of sleep drive, uncovering the Ube3a gene as a novel genetic regulator of sleep homeostasis. Our findings encourage a re-evaluation of current treatment strategies for sleep dysfunction in AS, and suggest that interventions that promote increased sleep drive may alleviate sleep disturbances in individuals with AS.


Subject(s)
Brain Waves/physiology , Circadian Rhythm/genetics , Homeostasis/genetics , Sleep Wake Disorders/genetics , Ubiquitin-Protein Ligases/metabolism , Analysis of Variance , Animals , Brain Waves/genetics , Disease Models, Animal , Electroencephalography , Electromyography , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA, Messenger/metabolism , Suprachiasmatic Nucleus/metabolism , Ubiquitin-Protein Ligases/genetics
15.
Nat Chem Biol ; 9(4): 257-63, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23396078

ABSTRACT

Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild-type zebrafish and mice. To our surprise, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in nontransgenic animals, including humans.


Subject(s)
Ion Channels/metabolism , Light Signal Transduction/drug effects , Motor Activity/drug effects , Photochemical Processes/drug effects , Sensory Receptor Cells/drug effects , Small Molecule Libraries/pharmacology , Zebrafish Proteins/metabolism , Animals , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Cysteine/chemistry , Cysteine/metabolism , Electron Transport/drug effects , Electron Transport/radiation effects , Embryo, Nonmammalian , Humans , Ion Channels/agonists , Ion Channels/genetics , Lasers , Light , Light Signal Transduction/radiation effects , Mice , Motor Activity/physiology , Motor Activity/radiation effects , Mutation , Oxidation-Reduction , Photochemical Processes/radiation effects , Piperazines/pharmacology , Protein Isoforms/agonists , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sensory Receptor Cells/physiology , Sensory Receptor Cells/radiation effects , Structure-Activity Relationship , TRPA1 Cation Channel , Transient Receptor Potential Channels , Zebrafish , Zebrafish Proteins/agonists , Zebrafish Proteins/genetics
17.
J Neurosci ; 33(27): 11314-22, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23825434

ABSTRACT

Prostatic acid phosphatase (PAP) and ecto-5'-nucleotidase (NT5E) hydrolyze extracellular AMP to adenosine in dorsal root ganglia (DRG) neurons and in the dorsal spinal cord. Previously, we found that adenosine production was reduced, but not eliminated, in Pap⁻/⁻/Nt5e⁻/⁻ double knock-out (dKO) mice, suggesting that a third AMP ectonucleotidase was present in these tissues. Here, we found that tissue-nonspecific alkaline phosphatase (TNAP, encoded by the Alpl gene) is expressed and functional in DRG neurons and spinal neurons. Using a cell-based assay, we found that TNAP rapidly hydrolyzed extracellular AMP and activated adenosine receptors. This activity was eliminated by MLS-0038949, a selective pharmacological inhibitor of TNAP. In addition, MLS-0038949 eliminated AMP hydrolysis in DRG and spinal lamina II of dKO mice. Using fast-scan-cyclic voltammetry, we found that adenosine was rapidly produced from AMP in spinal cord slices from dKO mice, but virtually no adenosine was produced in spinal cord slices from dKO mice treated with MLS-0038949. Last, we found that AMP inhibited excitatory neurotransmission via adenosine A1 receptor activation in spinal cord slices from wild-type, Pap⁻/⁻, Nt5e⁻/⁻, and dKO mice, but failed to inhibit neurotransmission in slices from dKO mice treated with MLS-0038949. These data suggest that triple elimination of TNAP, PAP, and NT5E is required to block AMP hydrolysis to adenosine in DRG neurons and dorsal spinal cord. Moreover, our data reveal that TNAP, PAP, and NT5E are the main AMP ectonucleotidases in primary somatosensory neurons and regulate physiology by metabolizing extracellular purine nucleotides.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine/metabolism , Alkaline Phosphatase/metabolism , Ganglia, Spinal/metabolism , Protein Tyrosine Phosphatases/metabolism , Acid Phosphatase , Animals , GPI-Linked Proteins/metabolism , Ganglia, Spinal/chemistry , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Spinal Cord/chemistry , Spinal Cord/metabolism , Tissue Distribution/physiology
18.
Mol Pharmacol ; 85(5): 800-10, 2014 May.
Article in English | MEDLINE | ID: mdl-24608858

ABSTRACT

Multiple genome-wide association studies have linked diacylglycerol kinase η (DGKη) to bipolar disorder (BPD). Moreover, DGKη expression is increased in tissue from patients with BPD. How increased levels of this lipid kinase might affect cellular functions is currently unclear. Here, we overexpressed mouse DGKη in human embryonic kidney 293 cells to examine substrate specificity and signaling downstream of endogenous G protein-coupled receptors (GPCRs). We found that DGKη can phosphorylate diacylglycerol (DAG) with different acyl side chains (8:0, 12:0, 18:1). In addition, overexpression of DGKη enhanced calcium mobilization after stimulating muscarinic receptors with carbachol and after stimulating purinergic receptors with ATP. This effect required DGKη catalytic activity, as assessed using a kinase-dead (G389D) mutant and multiple truncation constructs. DGKη was localized throughout the cytosol and did not translocate to the plasma membrane after stimulation with carbachol. Since protein kinase C (PKC) can be activated by DAG and promotes receptor desensitization, we also examined functional interactions between PKC and DGKη. We found that acute activation of PKC with phorbol 12-myristate 13-acetate shortened carbachol-evoked calcium responses and occluded the effect of overexpressed DGKη. Moreover, inhibition of PKC activity with bisindolylmaleimide I (BIM I) produced the same enhancing effect on carbachol-evoked calcium mobilization as overexpressed DGKη, and overexpression of DGKη produced no additional effect on calcium mobilization in the presence of BIM I. Taken together, our data suggest that DGKη enhances GPCR signaling by reducing PKC activation.


Subject(s)
Diacylglycerol Kinase/biosynthesis , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Gene Expression Regulation, Enzymologic , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Animals , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL
19.
Mol Pain ; 10: 69, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25406633

ABSTRACT

BACKGROUND: Calcitonin gene-related peptide-α (CGRPα) is a classic marker of peptidergic nociceptive neurons and is expressed in myelinated and unmyelinated dorsal root ganglia (DRG) neurons. Recently, we found that ablation of Cgrpα-expressing sensory neurons reduced noxious heat sensitivity and enhanced sensitivity to cold stimuli in mice. These studies suggested that the enhanced cold responses were due to disinhibition of spinal neurons that receive inputs from cold-sensing/TRPM8 primary afferents; although a direct role for TRPM8 was not examined at the time. RESULTS: Here, we ablated Cgrpα-expressing sensory neurons in mice lacking functional TRPM8 and evaluated sensory responses to noxious heat, cold temperatures, and cold mimetics (acetone evaporative cooling and icilin). We also evaluated thermoregulation in these mice following an evaporative cold challenge. We found that ablation of Cgrpα-expressing sensory neurons in a Trpm8-/- background reduced sensitivity to noxious heat but did not enhance sensitivity to cold stimuli. Thermoregulation following the evaporative cold challenge was not affected by deletion of Trpm8 in control or Cgrpα-expressing sensory neuron-ablated mice. CONCLUSIONS: Our data indicate that the enhanced behavioral responses to cold stimuli in CGRPα sensory neuron-ablated mice are dependent on functional TRPM8, whereas the other sensory and thermoregulatory phenotypes caused by CGRPα sensory neuron ablation are independent of TRPM8.


Subject(s)
Calcitonin Gene-Related Peptide/deficiency , Cold Temperature/adverse effects , Sensory Receptor Cells/metabolism , Sensory Thresholds/drug effects , TRPM Cation Channels/metabolism , Animals , Body Temperature Regulation/drug effects , Body Temperature Regulation/genetics , Body Weight/drug effects , Body Weight/genetics , Calcitonin Gene-Related Peptide/genetics , Cell Count , Diphtheria Toxin/pharmacology , Ganglia, Spinal/cytology , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Hot Temperature/adverse effects , Humans , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Male , Mice , Mice, Transgenic , Neurofilament Proteins/metabolism , Phosphopyruvate Hydratase/metabolism , Pyrimidinones/pharmacology
20.
J Cell Sci ; 125(Pt 14): 3390-401, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22467852

ABSTRACT

Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis.


Subject(s)
Cell Membrane/metabolism , GTPase-Activating Proteins/metabolism , Pseudopodia/metabolism , Actins/metabolism , Animals , COS Cells , Cell Movement , Chlorocebus aethiops , Cytoskeleton/metabolism , HEK293 Cells , Humans , Neurons/cytology , Neurons/metabolism , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL