Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Pept Sci ; 20(1): 7-19, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24222478

ABSTRACT

Neuromedin U (NMU) is an endogenous peptide implicated in the regulation of feeding, energy homeostasis, and glycemic control, which is being considered for the therapy of obesity and diabetes. A key liability of NMU as a therapeutic is its very short half-life in vivo. We show here that conjugation of NMU to human serum albumin (HSA) yields a compound with long circulatory half-life, which maintains full potency at both the peripheral and central NMU receptors. Initial attempts to conjugate NMU via the prevalent strategy of reacting a maleimide derivative of the peptide with the free thiol of Cys34 of HSA met with limited success, because the resulting conjugate was unstable in vivo. Use of a haloacetyl derivative of the peptide led instead to the formation of a metabolically stable conjugate. HSA-NMU displayed long-lasting, potent anorectic, and glucose-normalizing activity. When compared side by side with a previously described PEG conjugate, HSA-NMU proved superior on a molar basis. Collectively, our results reinforce the notion that NMU-based therapeutics are promising candidates for the treatment of obesity and diabetes.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Neuropeptides/chemical synthesis , Neuropeptides/pharmacology , Polyethylene Glycols/pharmacology , Serum Albumin/chemical synthesis , Animals , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/pharmacology , Blood Glucose , Cell Line , Drug Evaluation, Preclinical , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Male , Mice , Mice, Inbred C57BL , Neuropeptides/pharmacokinetics , Polyethylene Glycols/pharmacokinetics , Receptors, Neurotransmitter/agonists , Serum Albumin/pharmacokinetics , Serum Albumin/pharmacology , Serum Albumin, Human , Weight Loss/drug effects
2.
Bioorg Med Chem ; 20(15): 4751-9, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22771182

ABSTRACT

Neuromedin U (NMU) is an endogenous peptide, whose role in the regulation of feeding and energy homeostasis is well documented. Two NMU receptors have been identified: NMUR1, expressed primarily in the periphery, and NMUR2, expressed predominantly in the brain. We recently demonstrated that acute peripheral administration of NMU exerts potent but acute anorectic activity and can improve glucose homeostasis, with both actions mediated by NMUR1. Here, we describe the development of a metabolically stable analog of NMU, based on derivatization of the native peptide with high molecular weight poly(ethylene) glycol (PEG) ('PEGylation'). PEG size, site of attachment, and conjugation chemistry were optimized, to yield an analog which displays robust and long-lasting anorectic activity and significant glucose-lowering activity in vivo. Studies in NMU receptor-deficient mice showed that PEG-NMU displays an expanded pharmacological profile, with the ability to engage NMUR2 in addition to NMUR1. In light of these data, PEGylated derivatives of NMU represent promising candidates for the treatment of obesity and diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Neuropeptides/pharmacology , Obesity/drug therapy , Polyethylene Glycols/chemistry , Receptors, Neurotransmitter/agonists , Animals , Dose-Response Relationship, Drug , Glucose Tolerance Test , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptides/administration & dosage , Neuropeptides/chemical synthesis , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/pharmacology , Receptors, Neurotransmitter/deficiency , Structure-Activity Relationship
3.
J Pept Sci ; 17(4): 270-80, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21294225

ABSTRACT

Obesity is one of the major risk factors for type 2 diabetes, and the development of agents, that can simultaneously achieve glucose control and weight loss, is being actively pursued. Therapies based on peptide mimetics of the gut hormone glucagon-like peptide 1 (GLP-1) are rapidly gaining favor, due to their ability to increase insulin secretion in a strictly glucose-dependent manner, with little or no risk of hypoglycemia, and to their additional benefit of causing a modest, but durable weight loss. Oxyntomodulin (OXM), a 37-amino acid peptide hormone of the glucagon (GCG) family with dual agonistic activity on both the GLP-1 (GLP1R) and the GCG (GCGR) receptors, has been shown to reduce food intake and body weight in humans, with a lower incidence of treatment-associated nausea than GLP-1 mimetics. As for other peptide hormones, its clinical application is limited by the short circulatory half-life, a major component of which is cleavage by the enzyme dipeptidyl peptidase IV (DPP-IV). SAR studies on OXM, described herein, led to the identification of molecules resistant to DPP-IV degradation, with increased potency as compared to the natural hormone. Analogs derivatized with a cholesterol moiety display increased duration of action in vivo. Moreover, we identified a single substitution which can change the OXM pharmacological profile from a dual GLP1R/GCGR agonist to a selective GLP1R agonist. The latter finding enabled studies, described in detail in a separate study (Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capitò E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 2009; 58: 2258-2266), which highlight the potential of GLP1R/GCGR dual agonists as a potentially superior class of therapeutics over the pure GLP1R agonists currently in clinical use.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Oxyntomodulin/chemistry , Oxyntomodulin/metabolism , Amino Acid Sequence , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Eating/drug effects , Humans , Mice , Molecular Sequence Data , Molecular Structure , Obesity/drug therapy , Oxyntomodulin/pharmacology , Oxyntomodulin/therapeutic use , Peptides/chemical synthesis , Peptides/chemistry , Peptides/genetics , Weight Loss/drug effects
4.
Bioorg Med Chem Lett ; 20(1): 236-9, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19932961

ABSTRACT

Reverse cholesterol transport (RCT) is believed to be the primary mechanism by which HDL and its major protein apoA-I protect against atherosclerosis. Starting from the inactive 22-amino acid peptide representing the consensus sequence of the class A amphipathic helical repeats of apoA-I, we designed novel peptides able to mobilize cholesterol from macrophages in vitro, and to stimulate the formation of 'nascent HDL' particles, with potency comparable to the entire apoA-I protein.


Subject(s)
Apolipoprotein A-I/chemistry , Cholesterol/metabolism , High-Density Lipoproteins, Pre-beta/metabolism , Peptides/chemistry , Amino Acid Sequence , Animals , Apolipoprotein A-I/metabolism , Cell Line , Circular Dichroism , Macrophages/metabolism , Mice , Molecular Sequence Data , Peptides/chemical synthesis , Peptides/toxicity , Protein Folding , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL