Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Transbound Emerg Dis ; 69(5): e2994-e3006, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35801561

ABSTRACT

Toxocariasis is an infection caused by the round worms Toxocara canis and Toxocara cati. It occurs worldwide though it is more prevalent in developing countries. For the diagnosis of toxocariasis, the most used method is the indirect enzyme-linked immunosorbent assay (indirect ELISA), based on the detection of specific antibodies using the excreted/secreted products from T. canis larvae (TES) as antigens, but it cross-reacts with several helminth infections. For this reason, there is a need to investigate species-specific immunoreactive proteins, which can be used for the development of a more sensitive and specific diagnosis. This study aims to investigate immunoreactive protein candidates to be used for the development of a more sensitive and specific diagnosis of Toxocara spp. infection in humans. We have used immunoblotting and mass spectrometry to select four Toxocara canis immunoreactive proteins that were recombinantly expressed in bacteria and evaluated as potential new diagnostic antigens (rMUC3, rTES 26, rTES32 and rCTL4). The recognition of these recombinant proteins by total serum IgG and IgG4 was assayed using the purified proteins in an isolated manner or in combination. The IgG ELISAs performed with individual recombinant antigens reached values of sensitivity and specificity that ranged from 91.7% to 97.3% and 94.0% to 97.9%, respectively. Among the analyses, the IgG4 immunoassay was proven to be more effective, revealing a sensitivity that ranged from 88.8% to 98.3% and a specificity of 97.8%-97.9%. The IgG4 ELISA was shown to be more effective and presented no cross-reactivity when using combinations of the rTES 26 and rCTL4 recombinant proteins. The combination of these two molecules achieved 100% sensitivity and specificity. The use of only two recombinant proteins can contribute to improve the current panorama of toxocariasis immunodiagnosis for, with a better optimization and reduced cost.


Subject(s)
Toxocara canis , Toxocariasis , Animals , Antigens, Helminth , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Humans , Immunoblotting/veterinary , Immunoglobulin G , Immunologic Tests/veterinary , Proteomics , Recombinant Proteins , Toxocara , Toxocariasis/diagnosis
2.
Vaccine ; 38(30): 4762-4772, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32451213

ABSTRACT

Toxocariasis, a natural helminth infection of dogs and cats caused by Toxocara canis and T. cati, respectively, that are transmitted to mammals, including humans. Infection control is based currently on periodic antihelmintic treatment and there is a need for the development of vaccines to prevent this infection. MATERIALS AND METHODS: Eight potential vaccine candidate T. canis recombinant proteins were identified by in silico (rTcGPRs, rTcCad, rTcVcan, rTcCyst) and larval proteomics (rTES26, rTES32, rMUC-3 and rCTL-4) analyses. Immunogenicity and protection against infectious challenge for seven of these antigens were determined in a murine model of toxocariasis. C57BL/6 female mice were immunized with each of or combinations of recombinant antigens prior to challenge with 500 T. canis embryonated eggs. Levels of specific antibodies (IgG, IgG1, IgG2a and IgE) in sera and cytokines (IL-5, INF-É£ and IL-10) produced by antigens-stimulated splenocytes, were measured. Presence of specific antibodies to the molecules was measured in sera of T. canis-seropositive dogs and humans. RESULTS: All seven molecules were immunogenic in immunized mice; all stimulated significantly elevated levels of specific IgG, IgG1 or IgG2a and six were associated with elevated levels of specific IgE; all induced elevated production of IFN- É£ and IL-10 by splenocytes, but only the in silico-identified membrane-associated recombinants (rTcCad, rTcVcan, and rTcCyst) induced significantly increased IL-5 production. Vaccination with two of the latter (rTcCad and rTcVcan) reduced larval loads in the T. canis challenged mice by 54.3% and 53.9% (P < 0.0001), respectively, compared to unimmunized controls. All seven recombinants were recognized by T. canis-seropositive dog and human sera. CONCLUSION: The identification of vaccine targets by in silico analysis was an effective strategy to identify immunogenic T. canis proteins capable of reducing larval burdens following challenge with the parasite. Two recombinant proteins, rTcCad and rTcVcan, were identified as promising vaccine candidates for canine toxocariasis.


Subject(s)
Cat Diseases , Dog Diseases , Toxocara canis , Toxocariasis , Animals , Cats , Disease Models, Animal , Dogs , Female , Mice , Mice, Inbred C57BL , Recombinant Proteins/genetics , Toxocariasis/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL