Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37580082

ABSTRACT

Huntington's disease (HD) is a movement disorder caused by a mutation in the Huntingtin gene that leads to severe neurodegeneration. Molecular mechanisms of HD are not sufficiently understood, and no cure is currently available. Here, we demonstrate neuroprotective effects of hepatoma-derived growth factor (HDGF) in cellular and mouse HD models. We show that HD-vulnerable neurons in the striatum and cortex express lower levels of HDGF than resistant ones. Moreover, lack of endogenous HDGF exacerbated motor impairments and reduced the life span of R6/2 Huntington's disease mice. AAV-mediated delivery of HDGF into the brain reduced mutant Huntingtin inclusion load, but had no significant effect on motor behavior or life span. Interestingly, both nuclear and cytoplasmic versions of HDGF were efficient in rescuing mutant Huntingtin toxicity in cellular HD models. Moreover, extracellular application of recombinant HDGF improved viability of mutant Huntingtin-expressing primary neurons and reduced mutant Huntingtin aggregation in neural progenitor cells differentiated from human patient-derived induced pluripotent stem cells. Our findings provide new insights into the pathomechanisms of HD and demonstrate neuroprotective potential of HDGF in neurodegeneration.


Subject(s)
Huntington Disease , Neuroprotective Agents , Mice , Humans , Animals , Huntington Disease/genetics , Huntington Disease/drug therapy , Huntington Disease/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Neuroprotective Agents/therapeutic use , Neurons/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
2.
Nat Commun ; 14(1): 560, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732333

ABSTRACT

Amyloid-like aggregates of the microtubule-associated protein Tau are associated with several neurodegenerative disorders including Alzheimer's disease. The existence of cellular machinery for the removal of such aggregates has remained unclear, as specialized disaggregase chaperones are thought to be absent in mammalian cells. Here we show in cell culture and in neurons that the hexameric ATPase valosin-containing protein (VCP) is recruited to ubiquitylated Tau fibrils, resulting in their efficient disaggregation. Aggregate clearance depends on the functional cooperation of VCP with heat shock 70 kDa protein (Hsp70) and the ubiquitin-proteasome machinery. While inhibition of VCP activity stabilizes large Tau aggregates, disaggregation by VCP generates seeding-active Tau species as byproduct. These findings identify VCP as a core component of the machinery for the removal of neurodegenerative disease aggregates and suggest that its activity can be associated with enhanced aggregate spreading in tauopathies.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Humans , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Neurodegenerative Diseases/metabolism , Molecular Chaperones/metabolism , Heat-Shock Proteins/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Mammals/metabolism
3.
Life Sci Alliance ; 5(3)2022 03.
Article in English | MEDLINE | ID: mdl-34933920

ABSTRACT

The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like ß-sheet proteins (ß proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, ß proteins interact with and sequester AP-3 µ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3µ1 expression ameliorates neurotoxicity caused by ß proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.


Subject(s)
Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Gain of Function Mutation , Neurons/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/ultrastructure , Amyloidogenic Proteins/ultrastructure , Cell Survival/genetics , Gene Expression , Lysosomes/metabolism , Lysosomes/ultrastructure , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurons/ultrastructure , Protein Aggregates , Protein Aggregation, Pathological/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL