Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nat Biotechnol ; 39(9): 1141-1150, 2021 09.
Article in English | MEDLINE | ID: mdl-34504346

ABSTRACT

Clinical applications of precision oncology require accurate tests that can distinguish true cancer-specific mutations from errors introduced at each step of next-generation sequencing (NGS). To date, no bulk sequencing study has addressed the effects of cross-site reproducibility, nor the biological, technical and computational factors that influence variant identification. Here we report a systematic interrogation of somatic mutations in paired tumor-normal cell lines to identify factors affecting detection reproducibility and accuracy at six different centers. Using whole-genome sequencing (WGS) and whole-exome sequencing (WES), we evaluated the reproducibility of different sample types with varying input amount and tumor purity, and multiple library construction protocols, followed by processing with nine bioinformatics pipelines. We found that read coverage and callers affected both WGS and WES reproducibility, but WES performance was influenced by insert fragment size, genomic copy content and the global imbalance score (GIV; G > T/C > A). Finally, taking into account library preparation protocol, tumor content, read coverage and bioinformatics processes concomitantly, we recommend actionable practices to improve the reproducibility and accuracy of NGS experiments for cancer mutation detection.


Subject(s)
Benchmarking , Exome Sequencing/standards , Neoplasms/genetics , Sequence Analysis, DNA/standards , Whole Genome Sequencing/standards , Cell Line , Cell Line, Tumor , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Neoplasms/pathology , Reproducibility of Results
2.
Nat Biotechnol ; 39(9): 1151-1160, 2021 09.
Article in English | MEDLINE | ID: mdl-34504347

ABSTRACT

The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence. Although the gDNA reference samples are not representative of primary cancer cells from a clinical sample, when setting up a sequencing pipeline, they not only minimize potential biases from technologies, assays and informatics but also provide a unique resource for benchmarking 'tumor-only' or 'matched tumor-normal' analyses.


Subject(s)
Benchmarking , Breast Neoplasms/genetics , DNA Mutational Analysis/standards , High-Throughput Nucleotide Sequencing/standards , Whole Genome Sequencing/standards , Cell Line, Tumor , Datasets as Topic , Germ Cells , Humans , Mutation , Reference Standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL