Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Appl Microbiol Biotechnol ; 106(4): 1341-1353, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35091763

ABSTRACT

The rising concern with the emission of greenhouse gases has boosted new incentives for biofuels production, which are less polluting than fossil fuels. Special attention has been given to the second-generation ethanol, as it is produced from abundant feedstocks which do not compete with food production, such as lignocellulosic biomass and whey. Kluyveromyces marxianus stands out in second-generation ethanol production due to its capacity of assimilating lactose, the sugar found in whey, and tolerating high temperatures used in simultaneous saccharification processes. Nonetheless, contrary to Saccharomyces cerevisiae, K. marxianus does not tolerate high ethanol concentrations. Ethanol causes a broad range of toxic effects on yeasts, acting on cell membrane and proteins, as well as inducing the generation of reactive oxygen species (ROS). The ethanol stress responses are not fully understood, mainly in non-conventional yeasts such as K. marxianus. Indeed, many molecular responses to ethanol stress are still inferred from S. cerevisiae. As such, a better understanding of the ethanol stress responses in K. marxianus may provide the basis for improving its use in the biofuel industry. Additionally, the selection of ethanol-tolerant strains by metabolic engineering is useful to provide strains with improved capacity to withstand stressful conditions, as well as to obtain new insights about the ethanol stress responses. Key points • It is still not totally clear why K. marxianus is less tolerant to ethanol than S. cerevisiae. • Understanding the ethanol stress response in K. marxianus is pivotal for improving its application in the biofuel industry. • The Metabolic engineering is expected to improve the ethanol tolerance in K. marxianus.


Subject(s)
Ethanol , Kluyveromyces , Ethanol/metabolism , Fermentation , Kluyveromyces/metabolism , Lactose/metabolism , Saccharomyces cerevisiae/metabolism
2.
Appl Microbiol Biotechnol ; 106(21): 6963-6976, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36197457

ABSTRACT

Papiliotrema laurentii, previously classified as Cryptococcus laurentii, is an oleaginous yeast that has been isolated from soil, plants, and agricultural and industrial residues. This variety of habitats reflects the diversity of carbon sources that it can metabolize, including monosaccharides, oligosaccharides, glycerol, organic acids, and oils. Compared to other oleaginous yeasts, such as Yarrowia lipolytica and Rhodotorula toruloides, there is little information regarding its genetic and physiological characteristics. From a biotechnological point of view, P. laurentii can produce surfactants, enzymes, and high concentrations of lipids, which can be used as feedstock for fatty acid-derived products. Moreover, it can be applied for the biocontrol of phytopathogenic fungi, contributing to quality maintenance in post- and pre-harvest fruits. It can also improve mycorrhizal colonization, nitrogen nutrition, and plant growth. P. laurentii is also capable of degrading polyester and diesel derivatives and acting in the bioremediation of heavy metals. In this review, we present the current knowledge about the basic and applied aspects of P. laurentii, underscoring its biotechnological potential and future perspectives. KEY POINTS: • The physiological characteristics of P. laurentii confer a wide range of biotechnological applications. • The regulation of the acetyl-CoA carboxylase in P. laurentii is different from most other oleaginous yeasts. • The GEM is a valuable tool to guide the construction of engineered P. laurentii strains with improved features for bio-based products.


Subject(s)
Acetyl-CoA Carboxylase , Yarrowia , Glycerol , Yarrowia/metabolism , Fatty Acids/metabolism , Nitrogen , Carbon , Oils , Soil , Monosaccharides , Surface-Active Agents , Polyesters
3.
Fungal Genet Biol ; 144: 103456, 2020 11.
Article in English | MEDLINE | ID: mdl-32911061

ABSTRACT

Oleaginous yeasts have stood out due to their ability to accumulate oil, which can be used for fatty acid-derived biofuel production. Papiliotrema laurentii UFV-1 is capable of starting the lipid accumulation in the late exponential growth phase and achieves maximum lipid content at 48 h of growth; it is, therefore, interesting to study how its oleaginous phenotype is regulated. Herein, we provide for the first time insights into the regulation of this phenotype in P. laurentii UFV-1. We sequenced and assembled its genome, performed comparative genomic analyses and investigated its phylogenetic relationships with other yeasts. Gene expression and metabolomic analyses were carried out on the P. laurentii UFV-1 cultivated under a nitrogen-limiting condition. Our results indicated that the lipogenesis of P. laurentii might have taken place during evolution after the divergence of genera in the phylum Basidiomycota. Metabolomic data indicated the redirection of the carbon flux towards fatty acid synthesis in response to the nitrogen limitation. Furthermore, purine seems to be catabolized to recycle nitrogen and leucine catabolization may provide acetyl-CoA for fatty acid synthesis. Analyses of the expression of genes encoding certain enzymes involved with the oleaginous phenotype indicated that the NADP+-dependent malic enzyme seems to play an important role in the supply of NADPH for fatty acid synthesis. There was a surprising decrease in the expression of the ACC1 gene, which encodes acetyl-CoA carboxylase, during lipid accumulation. Taken together, our results provided a basis for understanding lipid accumulation in P. laurentii under nitrogen limiting conditions.


Subject(s)
Basidiomycota/genetics , Fatty Acids/metabolism , Lipid Metabolism/genetics , Lipids/genetics , Basidiomycota/metabolism , Fatty Acids/genetics , Gene Expression Regulation, Fungal/genetics , Nitrogen/metabolism , Phenotype , Phylogeny
4.
Appl Microbiol Biotechnol ; 104(17): 7483-7494, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32676708

ABSTRACT

Kluyveromyces marxianus CCT 7735 shows potential for producing ethanol from lactose; however, its low ethanol tolerance is a drawback for its industrial application. The first aim of this study was to obtain four ethanol-tolerant K. marxianus CCT 7735 strains (ETS1, ETS2, ETS3, and ETS4) by adaptive laboratory evolution. The second aim was to select among them the strain that stood out and to evaluate metabolic changes associated with the improved ethanol tolerance in this strain. The ETS4 was selected for displaying a specific growth rate higher than the parental strain under ethanol stress (122%) and specific ethanol production rate (0.26 g/g/h) higher than those presented by the ETS1 (0.22 g/g/h), ETS2 (0.17 g/g/h), and ETS3 (0.17 g/g/h) under non-stress condition. Further analyses were performed with the ETS4 in comparison with its parental strain in order to characterize metabolic changes. Accumulation of valine and metabolites of the citric acid cycle (isocitric acid, citric acid, and cis-aconitic acid) was observed only in the ETS4 subjected to ethanol stress. Their accumulation in this strain may have been important to increase ethanol tolerance. Furthermore, the contents of fatty acid methyl esters and ergosterol were higher in the ETS4 than in the parental strain. These differences likely contributed to enhance ethanol tolerance in the ETS4. KEY POINTS: • K. marxianus ethanol-tolerant strains were selected by adaptive laboratory evolution. • Valine and metabolites of the TCA cycle were accumulated in the ETS4. • High contents of fatty acids and ergosterol contributed to enhance ethanol tolerance.


Subject(s)
Kluyveromyces , Laboratories , Ethanol , Fermentation , Kluyveromyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL