ABSTRACT
HIV-1 infection is characterized by generalized deregulation of the immune system, resulting in increased chronic immune activation. However, some individuals called HIV controllers (HICs) present spontaneous control of viral replication and have a more preserved immune system. Among HICs, discordant results have been observed regarding immune activation and the frequency of different T cell subsets, including Treg and Th17 cells. We evaluated T cell immune activation, differentiation and regulatory profiles in two groups of HICs-elite controllers (ECs) and viremic controllers (VCs)-and compared them to those of cART-treated individuals (cART) and HIV-1-negative (HIV-neg) individuals. ECs demonstrated similar levels of activated CD4+ and CD8+ T cells in comparison to HIV-neg, while cART and VCs showed elevated T cell activation. CD4+ T cell subset analyses showed differences only for transitional memory T cell frequency between the EC and HIV-neg groups. However, VC individuals showed higher frequencies of terminally differentiated, naïve, and stem cell memory T cells and lower frequencies of transitional memory and central memory T cells compared to the HIV-neg group. Among CD8+ T cell subsets, ECs presented higher frequencies of stem cell memory T cells, while VCs presented higher frequencies of terminally differentiated T cells compared to the HIV-neg group. HICs showed lower frequencies of total Treg cells compared to the HIV-neg and cART groups. ECs also presented higher frequencies of activated and a lower frequency of resting Treg cells than the HIV-neg and cART groups. Furthermore, we observed a high frequency of Th17 cells in ECs and high Th17/Treg ratios in both HIC groups. Our data showed that ECs had low levels of activated T cells and a high frequency of activated Treg and Th17 cells, which could restrict chronic immune activation and be indicative of a preserved mucosal response in these individuals.
Subject(s)
HIV Infections/immunology , HIV-1/physiology , Lymphocyte Activation , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Adult , Female , Humans , Lymphocyte Count , Male , Middle Aged , T-Lymphocytes, Regulatory/cytology , Th17 Cells/cytologyABSTRACT
Elite controllers (ECs) are rare individuals able to naturally control HIV-1 replication below the detection limit of viral load (VL) commercial assays. It is unclear, however, whether ECs might be considered a natural model of a functional cure because some studies have noted CD4+ T cell depletion and disease progression associated with abnormally high levels of immune activation and/or inflammation in this group. Here, we propose the use of immunological parameters to identify HIV-1 ECs that could represent the best model of a functional cure. We compared plasma levels of six inflammatory biomarkers (IP-10, IL-18, sCD163, sCD14, CRP, and IL-6) and percentages of activated CD8+ T cells (CD38+HLA-DR+) between 15 ECs [8 with persistent undetectable viremia (persistent elite controllers) and 7 with occasional viral blips (ebbing elite controllers)], 13 viremic controllers (VCs-plasma VL between 51 and 2,000 RNA copies/mL), and 18 HIV-1 infected patients in combined antiretroviral therapy, with suppressed viremia, and 18 HIV-uninfected controls (HIV-neg). The two groups of ECs presented inflammation and activation profiles similar to HIV-neg individuals, and there was no evidence of CD4+ T cell decline over time. VCs, by contrast, had higher levels of IL-18, IP-10, and CRP and a lower CD4/CD8 ratio than that of HIV-neg (P < 0.05). Plasma levels of IL-18 and IP-10 correlated positively with CD8+ T cell activation and negatively with both CD4/CD8 and CD4% in HIV-1 controllers. These results suggest that most ECs, defined using stringent criteria in relation to the cutoff level of viremia (≤50 copies/mL) and a minimum follow-up time of >5 years, show no evidence of persistent inflammation or immune activation. This study further suggests that plasmatic levels of IL-18/IP-10 combined with the frequency of CD8+CD38+HLA-DR+ T cells can be important biomarkers to identify models of a functional cure among HIV-1 ECs.