Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Cell Sci ; 134(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34851405

ABSTRACT

Cadherin-mediated cell adhesion requires anchoring via the Ɵ-catenin-α-catenin complex to the actin cytoskeleton, yet, α-catenin only binds F-actin weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin-α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin-binding region of α-catenin did not impair the ability of VE-cadherin-α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction-stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin-binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin-α-catenin chimera. We found that this epitope became exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest that the VE-cadherin-α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin that support constitutive strong binding to actin.


Subject(s)
Cadherins , Endothelial Cells , Actin Cytoskeleton , Actins/genetics , Cadherins/genetics , Intercellular Junctions , Vinculin , alpha Catenin/genetics
2.
Clin Chem ; 68(6): 803-813, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35292813

ABSTRACT

BACKGROUND: Assays that account for the biological properties and fragmentation of cell-free DNA (cfDNA) can improve the performance of liquid biopsy. However, preanalytic and physiological differences between individuals on fragmentomic analysis are poorly defined. METHODS: We analyzed the impact of collection tube, plasma processing time, and physiology on the size distribution of cfDNA, their genome-wide representation, and sequence diversity at the cfDNA fragment ends using shallow whole-genome sequencing. RESULTS: Neither different stabilizing collection tubes nor processing times affected the cfDNA fragment sizes, but could impact the genome-wide fragmentation patterns and fragment-end sequences of cfDNA. In addition, beyond differences depending on the gender, the physiological conditions tested between 63 individuals (age, body mass index, use of medication, and chronic conditions) minimally influenced the outcome of fragmentomic methods. CONCLUSIONS: Fragmentomic approaches have potential for implementation in the clinic, pending clear traceability of analytical and physiological factors.


Subject(s)
Cell-Free Nucleic Acids , Cell-Free Nucleic Acids/genetics , DNA Fragmentation , Humans , Liquid Biopsy/methods
3.
Exp Cell Res ; 376(1): 86-91, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30633881

ABSTRACT

Collective invasion drives the spread of multicellular cancer groups, into the normal tissue surrounding several epithelial tumors. Collective invasion recapitulates various aspects of the multicellular organization and collective migration that take place during normal development and repair. Collective migration starts with the specification of leader cells in which a polarized, migratory phenotype is established. Leader cells initiate and organize the migration of follower cells, to allow the group of cells to move as a cohesive and polarized unit. Leader-follower specification is essential for coordinated and directional collective movement. Forces exerted by cohesive cells represent key signals that dictate multicellular coordination and directionality. Physical forces originate from the contraction of the actomyosin cytoskeleton, which is linked between cells via cadherin-based cell-cell junctions. The cadherin complex senses and transduces fluctuations in forces into biochemical signals that regulate processes like cell proliferation, motility and polarity. With cadherin junctions being maintained in most collective movements the cadherin complex is ideally positioned to integrate mechanical information into the organization of collective cell migration. Here we discuss the potential roles of cadherin mechanotransduction in the diverse aspects of leader versus follower cell specification during collective migration and neoplastic invasion.


Subject(s)
Cadherins/genetics , Cell Movement/genetics , Cell Polarity/genetics , Mechanotransduction, Cellular/genetics , Actomyosin/genetics , Animals , Cadherins/chemistry , Humans , Intercellular Junctions/genetics , Microtubules/genetics
4.
J Pathol ; 245(4): 456-467, 2018 08.
Article in English | MEDLINE | ID: mdl-29774524

ABSTRACT

Although mutational inactivation of E-cadherin (CDH1) is the main driver of invasive lobular breast cancer (ILC), approximately 10-15% of all ILCs retain membrane-localized E-cadherin despite the presence of an apparent non-cohesive and invasive lobular growth pattern. Given that ILC is dependent on constitutive actomyosin contraction for tumor development and progression, we used a combination of cell systems and in vivo experiments to investigate the consequences of α-catenin (CTNNA1) loss in the regulation of anchorage independence of non-invasive breast carcinoma. We found that inactivating somatic CTNNA1 mutations in human breast cancer correlated with lobular and mixed ducto-lobular phenotypes. Further, inducible loss of α-catenin in mouse and human E-cadherin-expressing breast cancer cells led to atypical localization of E-cadherin, a rounded cell morphology, and anoikis resistance. Pharmacological inhibition experiments subsequently revealed that, similar to E-cadherin-mutant ILC, anoikis resistance induced by α-catenin loss was dependent on Rho/Rock-dependent actomyosin contractility. Finally, using a transplantation-based conditional mouse model, we demonstrate that inducible inactivation of α-catenin instigates acquisition of lobular features and invasive behavior. We therefore suggest that α-catenin represents a bona fide tumor suppressor for the development of lobular-type breast cancer and as such provides an alternative event to E-cadherin inactivation, adherens junction (AJ) dysfunction, and subsequent constitutive actomyosin contraction. Ā© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Antigens, CD/metabolism , Breast Neoplasms/metabolism , Cadherins/metabolism , Carcinoma, Lobular/metabolism , Cell Adhesion , Tumor Suppressor Proteins/metabolism , alpha Catenin/metabolism , Actomyosin/metabolism , Adherens Junctions/genetics , Adherens Junctions/metabolism , Adherens Junctions/pathology , Animals , Anoikis , Antigens, CD/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cadherins/genetics , Carcinoma, Lobular/genetics , Carcinoma, Lobular/pathology , Cell Proliferation , Cell Shape , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , MCF-7 Cells , Mice, Knockout , Mutation , Neoplasm Invasiveness , Phenotype , Signal Transduction , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , alpha Catenin/genetics , rho GTP-Binding Proteins/metabolism , rho-Associated Kinases/metabolism
5.
J Cell Sci ; 127(Pt 8): 1779-91, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24522187

ABSTRACT

The findings presented here demonstrate the role of α-catenin in cadherin-based adhesion and mechanotransduction in different mechanical contexts. Bead-twisting measurements in conjunction with imaging, and the use of different cell lines and α-catenin mutants reveal that the acute local mechanical manipulation of cadherin bonds triggers vinculin and actin recruitment to cadherin adhesions in an actin- and α-catenin-dependent manner. The modest effect of α-catenin on the two-dimensional binding affinities of cell surface cadherins further suggests that force-activated adhesion strengthening is due to enhanced cadherin-cytoskeletal interactions rather than to α-catenin-dependent affinity modulation. Complementary investigations of cadherin-based rigidity sensing also suggest that, although α-catenin alters traction force generation, it is not the sole regulator of cell contractility on compliant cadherin-coated substrata.


Subject(s)
Cadherins/blood , Cadherins/physiology , Cell Adhesion , Mechanotransduction, Cellular , alpha Catenin/physiology , Actins/metabolism , Animals , Binding Sites , Biomechanical Phenomena , Cadherins/chemistry , Cell Line, Tumor , Dogs , Erythrocytes/metabolism , Humans , Kinetics , Madin Darby Canine Kidney Cells , Protein Interaction Domains and Motifs , Protein Transport , Vinculin/metabolism
6.
Exp Cell Res ; 330(2): 382-397, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25447308

ABSTRACT

Cell migration is crucial in development, tissue repair and immunity and frequently aberrant in pathological processes including tumor metastasis. Focal adhesions (FAs) are integrin-based adhesion complexes that form the link between the cytoskeleton and the extracellular matrix and are thought to orchestrate cell migration. Understanding the regulation of FAs by (oncogenic) signaling pathways may identify strategies to target pathological cell migration. Here we describe the development of a robust FA tracker that enables the automatic, multi-parametric analysis of FA dynamics, morphology and composition from time-lapse image series generated by total internal reflection fluorescence (TIRF) microscopy. In control prostate carcinoma cells, this software recapitulates previous findings that relate morphological characteristics of FAs to their lifetime and their cellular location. We then investigated how FAs are altered when cell migration is induced by the metastasis-promoting hormone HGF and subsequently inhibited by activation of the small GTPase Rap1. We performed a detailed analysis of individual FA parameters, which identified FA size, sliding and intensity as primary targets of Rap1. HGF did not have strong effects on any of the FA parameters within the first hours of its addition. Subsequent Bayesian network inference (BNI), using all measured parameters as input, revealed little correlation between changes in cell migration and FA characteristics in this prostate carcinoma cell line. Instead BNI indicated a concerted coordination of cell size and FA parameters. Thus our results did not reveal a direct relation between the regulation of cell migration and the regulation of FA dynamics.


Subject(s)
Focal Adhesions/metabolism , Hepatocyte Growth Factor/metabolism , Image Processing, Computer-Assisted/methods , Prostatic Neoplasms/pathology , rap1 GTP-Binding Proteins/metabolism , Cell Adhesion , Cell Line, Tumor , Cell Movement , Extracellular Matrix/metabolism , HEK293 Cells , Humans , Male , Microscopy, Fluorescence , Neoplasm Metastasis , Prostatic Neoplasms/metabolism , Signal Transduction , Software
7.
J Cell Sci ; 126(Pt 2): 403-13, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23524998

ABSTRACT

Cells integrate biochemical and mechanical information to function within multicellular tissue. Within developing and remodeling tissues, mechanical forces contain instructive information that governs important cellular processes that include stem cell maintenance, differentiation and growth. Although the principles of signal transduction (protein phosphorylation, allosteric regulation of enzymatic activity and binding sites) are the same for biochemical and mechanical-induced signaling, the first step of mechanosensing, in which protein complexes under tension transduce changes in physical force into cellular signaling, is very different, and the molecular mechanisms are only beginning to be elucidated. In this Commentary, we focus on mechanotransduction at cell-cell junctions, aiming to comprehend the molecular mechanisms involved. We describe how different junction structures are associated with the actomyosin cytoskeleton and how this relates to the magnitude and direction of forces at cell-cell junctions. We discuss which cell-cell adhesion receptors have been shown to take part in mechanotransduction. Then we outline the force-induced molecular events that might occur within a key mechanosensitive system at cell-cell junctions; the cadherin-F-actin interface, at which α-catenin and vinculin form a central module. Mechanotransduction at cell-cell junctions emerges as an important signaling mechanism, and we present examples of its potential relevance for tissue development and disease.


Subject(s)
Actins/metabolism , Adherens Junctions/metabolism , Cadherins/metabolism , Animals , Humans , Signal Transduction , Vinculin/metabolism , alpha Catenin/metabolism
8.
Cell Tissue Res ; 355(3): 545-55, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24519624

ABSTRACT

The integrity of the endothelial barrier is controlled by the combined action of chemical and mechanical signaling systems. Permeability-regulating factors signal through small GTPases to regulate the architecture of the cytoskeleton and this has a strong impact on the morphology and stability of VE-cadherin-based cell-cell junctions. The details of how structural and mechanical properties of the actin cytoskeleton influence cell-cell adhesion and how this impacts the dynamic regulation of the endothelial barrier, are beginning to be elucidated. In this review, we discuss the physical and regulatory interactions between the VE-cadherin complex and the actomysoin cytoskeleton, as they are the main determinants of cell-cell adhesion and the mechanical architecture of the cytoskeleton. We discuss, based on recent in vitro data, how a balance between Linear Adherens Junctions, paralleled by cortical actin bundles and Focal Adherens Junctions, connected to radial action bundles, determines endothelial barrier function. We discuss how small GTPases control this balance by regulating the spatial organization and mechanics of actomyosin. We propose a hypothetical model of how biochemical and mechanical signals cooperate locally, at the actomyosin-adhesion interface to open and re-seal the barrier in a rapid and controlled manner.


Subject(s)
Endothelial Cells/physiology , Endothelium/physiology , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Cell Adhesion/physiology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelium/metabolism , Humans , Signal Transduction
9.
Cell Mol Life Sci ; 70(21): 4101-16, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23563964

ABSTRACT

Mechanical forces are increasingly recognized as central factors in the regulation of tissue morphogenesis and homeostasis. Central to the transduction of mechanical information into biochemical signaling is the contractile actomyosin cytoskeleton. Fluctuations in actomyosin contraction are sensed by tension sensitive systems at the interface between actomyosin and cell adhesion complexes. We review the current knowledge about the mechanical coupling of cell-cell junctions to the cytoskeleton and highlight the central role of α-catenin in this linkage. We assemble current knowledge about α-catenin's regulation by tension and about its interactions with a diversity of proteins. We present a model in which α-catenin is a force-regulated platform for a machinery of proteins that orchestrates local cortical remodeling in response to force. Finally, we highlight recently described fundamental processes in tissue morphogenesis and argue where and how this α-catenin-dependent cadherin mechanotransduction may be involved.


Subject(s)
Cadherins/metabolism , Mechanotransduction, Cellular/physiology , alpha Catenin/metabolism , Actomyosin/metabolism , Adherens Junctions/metabolism , Animals , Cell Adhesion , Cell Communication , Cytoskeleton/metabolism , Humans , Phenotype , Vinculin/metabolism
10.
J Extracell Biol ; 3(7): e164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38947877

ABSTRACT

Previously, we showed that quantification of lymphoma-associated miRNAs miR-155-5p, -127-3p and let-7a-5p levels in plasma extracellular vesicles (EVs) report treatment response in patients with classic Hodgkin lymphoma (cHL). Prior to clinical implementation, quality control (QC) steps and validation are required to meet international regulatory standards. Most published EV-based diagnostic assays have yet to meet these requirements. In order to advance the assay towards regulatory compliance (e.g., IVDR 2017/746), we incorporated three QC steps in our experimental EV-miRNA quantitative real-time reverse-transcription PCR (q-RT-PCR) assay in an ISO-13485 certified quality-management system (QMS). Liposomes encapsulated with a synthetic (nematode-derived) miRNA spike-in controlled for EV isolation by automated size-exclusion chromatography (SEC). Additional miRNA spike-ins controlled for RNA isolation and cDNA conversion efficiency. After deciding on quality criteria, in total 107 out of 120 samples from 46 patients passed QC. Generalized linear mixed-effect modelling with bootstrapping determined the diagnostic performance of the quality-controlled data at an area under the curve (AUC) of 0.84 (confidence interval [CI]: 0.76-0.92) compared to an AUC of 0.87 (CI: 0.80-0.94) of the experimental assay. After the inclusion of QC steps, the accuracy of the assay was determined to be 78.5% in predicting active disease status in cHL patients during treatment. We demonstrate that a quality-controlled plasma EV-miRNA assay is technically robust, taking EV-miRNA as liquid biopsy assay an important step closer to clinical evaluation.

11.
Nat Commun ; 15(1): 4866, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849373

ABSTRACT

Dense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain severalĀ epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown. Using breast carcinoma organoids, we show that Collagen I drives a force-dependent loop, specifically in basal-like cancer cells. The feed-forward loop is centered around the mechanotransducer Yap and independent of K14 expression. Yap promotes a transcriptional program that enhances Collagen I alignment and tension, which further activates Yap. Active Yap is detected in invading breast cancer cells in patients and required for collective invasion in 3D Collagen I and in the mammary fat pad of mice. Our work uncovers an essential function for Yap in leader cell selection during collective cancer invasion.


Subject(s)
Adaptor Proteins, Signal Transducing , Breast Neoplasms , Collagen Type I , Mechanotransduction, Cellular , Neoplasm Invasiveness , Transcription Factors , YAP-Signaling Proteins , Animals , Female , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Cell Line, Tumor , Collagen Type I/metabolism , Gene Expression Regulation, Neoplastic , Organoids/metabolism , Organoids/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism
12.
J Cell Biol ; 177(4): 683-94, 2007 May 21.
Article in English | MEDLINE | ID: mdl-17517963

ABSTRACT

Development, angiogenesis, wound healing, and metastasis all involve the movement of cells in response to changes in the extracellular environment. To determine whether caveolin-1 plays a role in cell migration, we have used fibroblasts from knockout mice. Caveolin-1-deficient cells lose normal cell polarity, exhibit impaired wound healing, and have decreased Rho and increased Rac and Cdc42 GTPase activities. Directional persistency of migration is lost, and the cells show an impaired response to external directional stimuli. Both Src inactivation and p190RhoGAP knockdown restore the wild-type phenotype to caveolin-1-deficient cells, suggesting that caveolin-1 stimulates normal Rho GTP loading through inactivation of the Src-p190RhoGAP pathway. These findings highlight the importance of caveolin-1 in the establishment of cell polarity during directional migration through coordination of the signaling of Src kinase and Rho GTPases.


Subject(s)
Caveolin 1/physiology , Cell Movement/physiology , Cell Polarity/physiology , rho GTP-Binding Proteins/physiology , src-Family Kinases/physiology , Animals , Caveolin 1/deficiency , Caveolin 1/genetics , Cell Line , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/enzymology , Fibroblasts/physiology , Humans , Mice , Mice, Knockout , NIH 3T3 Cells , Signal Transduction/physiology
13.
J Am Soc Nephrol ; 22(6): 1099-111, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21597037

ABSTRACT

Epithelial-mesenchymal transition (EMT) contributes to the progression of renal tubulointerstitial fibrosis. The N-methyl-d-aspartate receptor (NMDAR), which is present in proximal tubular epithelium, is a glutamate receptor that acts as a calcium channel. Activation of NMDAR induces actin rearrangement in cells of the central nervous system, but whether it helps maintain the epithelial phenotype of the proximal tubule is unknown. Here, knockdown of NMDAR1 in a proximal tubule cell line (HK-2) induced changes in cell morphology, reduced E-cadherin expression, and increased α-SMA expression. Induction of EMT with TGF-Ɵ1 led to downregulation of both E-cadherin and membrane-associated Ɵ-catenin, reorganization of F-actin, expression of mesenchymal markers de novo, upregulation of Snail1, and increased cell migration; co-treatment with NMDA attenuated all of these changes. Furthermore, NMDA reduced TGF-Ɵ1-induced phosphorylation of Erk1/2 and Akt and the activation of Ras, suggesting that NMDA antagonizes TGF-Ɵ1-induced EMT by inhibiting the Ras-MEK pathway. In the unilateral ureteral obstruction model, treatment with NMDA blunted obstruction-induced upregulation of α-SMA, FSP1, and collagen I and downregulation of E-cadherin. Taken together, these results suggest that NMDAR plays a critical role in preserving the normal epithelial phenotype and modulating tubular EMT.


Subject(s)
Epithelial Cells/cytology , Kidney Tubules, Proximal/cytology , Phenotype , Receptors, N-Methyl-D-Aspartate/physiology , Signal Transduction/physiology , Actins/metabolism , Animals , Cadherins/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Epithelial Cells/physiology , Fibrosis , Humans , Kidney/pathology , Kidney Tubules, Proximal/physiology , Mesoderm/cytology , Mesoderm/physiology , Mice , Models, Animal , Receptors, N-Methyl-D-Aspartate/genetics , Transforming Growth Factor beta1/pharmacology , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
14.
Oncogene ; 41(17): 2458-2469, 2022 04.
Article in English | MEDLINE | ID: mdl-35292774

ABSTRACT

The tumor micro-environment often contains stiff and irregular-bundled collagen fibers that are used by tumor cells to disseminate. It is still unclear how and to what extent, extracellular matrix (ECM) stiffness versus ECM bundle size and alignment dictate cancer cell invasion. Here, we have uncoupled Collagen-I bundling from stiffness by introducing inter-collagen crosslinks, combined with temperature induced aggregation of collagen bundling. Using organotypic models from mouse invasive ductal and invasive lobular breast cancers, we show that increased collagen bundling in 3D induces a generic increase in breast cancer invasion that is independent of migration mode. However, systemic collagen stiffening using advanced glycation end product (AGE) crosslinking prevents collective invasion, while leaving single cell invasion unaffected. Collective invasion into collagen matrices by ductal breast cancer cells depends on Lysyl oxidase-like 3 (Loxl3), a factor produced by tumor cells that reinforces local collagen stiffness. Finally, we present clinical evidence that collectively invading cancer cells at the invasive front of ductal breast carcinoma upregulate LOXL3. By uncoupling the mechanical, chemical, and structural cues that control invasion of breast cancer in three dimensions, our data reveal that spatial control over stiffness and bundling underlie collective dissemination of ductal-type breast cancers.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Cell Line, Tumor , Cell Movement , Collagen , Extracellular Matrix/pathology , Female , Humans , Mice , Neoplasm Invasiveness/pathology , Tumor Microenvironment
15.
Cell Rep ; 39(2): 110658, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417696

ABSTRACT

Blood vessel morphogenesis is driven by coordinated endothelial cell behaviors. Active remodeling of cell-cell junctions promotes cellular plasticity while preserving vascular integrity. Here, we analyze the dynamics of endothelial adherens junctions during lumen formation in angiogenic sprouts inĀ vivo. Live imaging in zebrafish reveals that lumen expansion is accompanied by the formation of transient finger-shaped junctions. Junctional fingers are positively regulated by blood pressure, whereas flow inhibition prevents their formation. Using fluorescent reporters, we show that junctional fingers contain the mechanotransduction protein vinculin. Furthermore, genetic deletion of vinculin prevents finger formation, a junctional defect that could be rescued by transient endothelial expression of vinculin. Our findings suggest a mechanism whereby lumen expansion leads to an increase in junctional tension, triggering recruitment of vinculin and formation of junctional fingers. We propose that endothelial cells employ force-dependent junctional remodeling to counteract external forces in order to maintain vascular integrity during sprouting angiogenesis.


Subject(s)
Endothelial Cells , Mechanotransduction, Cellular , Vinculin , Adherens Junctions/metabolism , Animals , Cadherins/metabolism , Endothelial Cells/metabolism , Intercellular Junctions/metabolism , Neovascularization, Physiologic , Vinculin/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
16.
Nat Cell Biol ; 4(11): 901-6, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12402047

ABSTRACT

cAMP is involved in a wide variety of cellular processes that were thought to be mediated by protein kinase A (PKA). However, cAMP also directly regulates Epac1 and Epac2, guanine nucleotide-exchange factors (GEFs) for the small GTPases Rap1 and Rap2 (refs 2,3). Unfortunately, there is an absence of tools to discriminate between PKA- and Epac-mediated effects. Therefore, through rational drug design we have developed a novel cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8CPT-2Me-cAMP), which activates Epac, but not PKA, both in vitro and in vivo. Using this analogue, we tested the widespread model that Rap1 mediates cAMP-induced regulation of the extracellular signal-regulated kinase (ERK). However, both in cell lines in which cAMP inhibits growth-factor-induced ERK activation and in which cAMP activates ERK, 8CPT-2Me-cAMP did not affect ERK activity. Moreover, in cell lines in which cAMP activates ERK, inhibition of PKA and Ras, but not Rap1, abolished cAMP-mediated ERK activation. We conclude that cAMP-induced regulation of ERK and activation of Rap1 are independent processes.


Subject(s)
8-Bromo Cyclic Adenosine Monophosphate/analogs & derivatives , Cyclic AMP/metabolism , Gene Expression Regulation , Guanine Nucleotide Exchange Factors/metabolism , Mitogen-Activated Protein Kinases/metabolism , rap1 GTP-Binding Proteins/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/metabolism , Amino Acid Sequence , Animals , CHO Cells , Cell Line , Cell Line, Tumor , Cricetinae , Cyclic AMP-Dependent Protein Kinases/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , Enzyme Inhibitors/pharmacology , Humans , In Vitro Techniques , Mice , Molecular Sequence Data , NIH 3T3 Cells , Phosphorylation , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Signal Transduction , Time Factors , Transfection
17.
J Cell Biol ; 220(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33688935

ABSTRACT

Epithelia are continuously self-renewed, but how epithelial integrity is maintained during the morphological changes that cells undergo in mitosis is not well understood. Here, we show that as epithelial cells round up when they enter mitosis, they exert tensile forces on neighboring cells. We find that mitotic cell-cell junctions withstand these tensile forces through the mechanosensitive recruitment of the actin-binding protein vinculin to cadherin-based adhesions. Surprisingly, vinculin that is recruited to mitotic junctions originates selectively from the neighbors of mitotic cells, resulting in an asymmetric composition of cadherin junctions. Inhibition of junctional vinculin recruitment in neighbors of mitotic cells results in junctional breakage and weakened epithelial barrier. Conversely, the absence of vinculin from the cadherin complex in mitotic cells is necessary to successfully undergo mitotic rounding. Our data thus identify an asymmetric mechanoresponse at cadherin adhesions during mitosis, which is essential to maintain epithelial integrity while at the same time enable the shape changes of mitotic cells.


Subject(s)
Adherens Junctions/physiology , Epithelial Cells/physiology , Epithelium/physiology , Intercellular Junctions/physiology , Mitosis/physiology , Actin Cytoskeleton/metabolism , Actins/metabolism , Adherens Junctions/metabolism , Animals , Cadherins/metabolism , Cell Line , Dogs , Epithelial Cells/metabolism , Epithelium/metabolism , Intercellular Junctions/metabolism , Madin Darby Canine Kidney Cells , Microfilament Proteins/metabolism
18.
Curr Biol ; 17(19): 1623-34, 2007 Oct 09.
Article in English | MEDLINE | ID: mdl-17825562

ABSTRACT

BACKGROUND: The establishment and maintenance of cell polarity is crucial for many biological functions and is regulated by conserved protein complexes. The Par polarity complex consisting of Par3, Par6, and PKCzeta, in conjunction with Tiam1-mediated Rac signaling, controls apical-basal cell polarity in contacting epithelial cells. Here we tested the hypothesis that the Par complex, in conjunction with Tiam1, controls "front-rear" polarity during the persistent migration of freely migrating keratinocytes. RESULTS: Wild-type (WT) epidermal keratinocytes lacking cell-cell contacts are stably front-rear polarized and migrate persistently. In contrast, Tiam1-deficient (Tiam1 KO) and (si)Par3-depleted keratinocytes are generally unpolarized and migrate randomly because front-rear polarity is short lived. Immunoprecipitation experiments show that in migrating keratinocytes, Tiam1 associates with Par3 and PKCzeta. Moreover, Par3, PKCzeta, and Tiam1 proteins are enriched at the leading edges of polarized keratinocytes. Tiam1 KO keratinocytes are impaired in chemotactic migration toward growth factors, whereaes haptotactic migration is similar to WT. Par3 depletion or the blocking of PKCzeta signaling in WT keratinocytes impairs chemotaxis but has no additional effect on Tiam1 KO cells. The migratory and morphological defects in keratinocytes with impaired Par-Tiam1 function closely resemble cells with pharmacologically destabilized microtubules (MTs). Indeed, MTs in Tiam1 KO keratinocytes and WT cells treated with a PKCzeta inhibitor are unstable, thereby negatively influencing directional but not random migration. CONCLUSIONS: We conclude that the Par-Tiam1 complex stabilizes front-rear polarization of noncontacting migratory cells, thereby stimulating persistent and chemotactic migration, whereas in contacting keratinocytes, the same complex controls the establishment of long-lasting apical-basal polarity. These findings underscore a remarkable flexibility of the Par polarity complex that, depending on the biological context, controls distinct forms of cellular polarity.


Subject(s)
Cell Adhesion Molecules/physiology , Cell Movement/physiology , Cell Polarity/physiology , Guanine Nucleotide Exchange Factors/physiology , Microtubules/physiology , Adaptor Proteins, Signal Transducing , Animals , Cell Cycle Proteins , Cell Movement/genetics , Cell Polarity/genetics , Cells, Cultured , Chemotaxis/genetics , Chemotaxis/physiology , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Keratinocytes/cytology , Keratinocytes/physiology , Mice , Mice, Knockout , Microtubules/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1
19.
J Cell Biol ; 171(1): 153-64, 2005 Oct 10.
Article in English | MEDLINE | ID: mdl-16216928

ABSTRACT

The scattering of Madin-Darby canine kidney cells in vitro mimics key aspects of epithelial-mesenchymal transitions during development, carcinoma cell invasion, and metastasis. Scattering is induced by hepatocyte growth factor (HGF) and is thought to involve disruption of cadherin-dependent cell-cell junctions. Scattering is enhanced on collagen and fibronectin, as compared with laminin1, suggesting possible cross talk between integrins and cell-cell junctions. We show that HGF does not trigger any detectable decrease in E-cadherin function, but increases integrin-mediated adhesion. Time-lapse imaging suggests that tension on cell-cell junctions may disrupt cell-cell adhesion. Varying the density and type of extracellular matrix proteins shows that scattering correlates with stronger integrin adhesion and increased phosphorylation of the myosin regulatory light chain. To directly test the role of integrin-dependent traction forces, substrate compliance was varied. Rigid substrates that produce high traction forces promoted scattering, in comparison to more compliant substrates. We conclude that integrin-dependent actomyosin traction force mediates the disruption of cell-cell adhesion during epithelial cell scattering.


Subject(s)
Actomyosin/metabolism , Cell Movement/physiology , Epithelial Cells/physiology , Integrins/physiology , Animals , Cadherins/physiology , Cell Adhesion , Cell Line , Cell Movement/drug effects , Cells, Cultured , Dogs , Down-Regulation , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Extracellular Matrix/physiology , Hepatocyte Growth Factor/pharmacology , Intercellular Junctions/metabolism , Kidney/cytology , Kidney/metabolism , Myosin Type II/physiology
20.
J Cell Biol ; 160(4): 487-93, 2003 Feb 17.
Article in English | MEDLINE | ID: mdl-12578910

ABSTRACT

cAMP controls many cellular processes mainly through the activation of protein kinase A (PKA). However, more recently PKA-independent pathways have been established through the exchange protein directly activated by cAMP (Epac), a guanine nucleotide exchange factor for the small GTPases Rap1 and Rap2. In this report, we show that cAMP can induce integrin-mediated cell adhesion through Epac and Rap1. Indeed, when Ovcar3 cells were treated with cAMP, cells adhered more rapidly to fibronectin. This cAMP effect was insensitive to the PKA inhibitor H-89. A similar increase was observed when the cells were transfected with Epac. Both the cAMP effect and the Epac effect on cell adhesion were abolished by the expression of Rap1-GTPase-activating protein, indicating the involvement of Rap1 in the signaling pathway. Importantly, a recently characterized cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, which specifically activates Epac but not PKA, induced Rap-dependent cell adhesion. Finally, we demonstrate that external stimuli of cAMP signaling, i.e., isoproterenol, which activates the G alpha s-coupled beta 2-adrenergic receptor can induce integrin-mediated cell adhesion through the Epac-Rap1 pathway. From these results we conclude that cAMP mediates receptor-induced integrin-mediated cell adhesion to fibronectin through the Epac-Rap1 signaling pathway.


Subject(s)
Cell Adhesion/physiology , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Integrins/metabolism , Receptors, Adrenergic, beta-2/metabolism , rap1 GTP-Binding Proteins/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/metabolism , Adrenergic beta-Agonists/metabolism , Carcinoma , Cyclic AMP/analogs & derivatives , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Fibronectins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Humans , Isoproterenol/metabolism , Mitogen-Activated Protein Kinases/metabolism , Ovarian Neoplasms , Signal Transduction/physiology , Tumor Cells, Cultured , rap1 GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL