Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 140(1): 74-87, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20074521

ABSTRACT

We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific beta-tubulin isotype III, result in a spectrum of human nervous system disorders that we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show that the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate that normal TUBB3 is required for axon guidance and maintenance in mammals.


Subject(s)
Tubulin/metabolism , Amino Acid Sequence , Animals , Axons/metabolism , Brain/embryology , Brain/metabolism , Cell Survival , Child , Developmental Disabilities , Female , Humans , Kinesins/metabolism , Male , Mice , Mice, Inbred C57BL , Microtubules/metabolism , Models, Molecular , Molecular Sequence Data , Mutation, Missense , Protein Transport , Tubulin/chemistry , Tubulin/genetics
2.
Invest Ophthalmol Vis Sci ; 45(7): 2218-23, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15223798

ABSTRACT

PURPOSE: Three congenital fibrosis of the extraocular muscles phenotypes (CFEOM1-3) have been identified. Each represents a specific form of paralytic strabismus characterized by congenital restrictive ophthalmoplegia, often with accompanying ptosis. It has been demonstrated that CFEOM1 results from mutations in KIF21A and CFEOM2 from mutations in PHOX2A. This study was conducted to determine the incidence of KIF21A and PHOX2A mutations among individuals with the third CFEOM phenotype, CFEOM3. METHODS: All pedigrees and sporadic individuals with CFEOM3 in the authors' database were identified, whether the pedigrees were linked or consistent with linkage to the FEOM1, FEOM2, and/or FEOM3 loci was determined, and the appropriate pedigrees and the sporadic individuals were screened for mutations in KIF21A and PHOX2A. RESULTS: Twelve CFEOM3 pedigrees and 10 CFEOM3 sporadic individuals were identified in the database. The structures of eight of the pedigrees permitted the generation of meaningful linkage data. KIF21A was screened in 17 probands, and mutations were identified in two CFEOM3 pedigrees. One pedigree harbored a novel mutation (2841G-->A, M947I) and one harbored the most common and recurrent of the CFEOM1 mutations identified previously (2860C-->T, R954W). None of CFEOM3 pedigrees or sporadic individuals harbored mutations in PHOX2A. CONCLUSIONS: The results demonstrate that KIF21A mutations are a rare cause of CFEOM3 and that KIF21A mutations can be nonpenetrant. Although KIF21A is the first gene to be associated with CFEOM3, the results imply that mutations in the unidentified FEOM3 gene are the more common cause of this phenotype.


Subject(s)
Kinesins/genetics , Mutation , Nerve Tissue Proteins/genetics , Oculomotor Muscles/pathology , Ophthalmoplegia/congenital , DNA Mutational Analysis , Female , Fibrosis , Genetic Linkage , Haplotypes , Homeodomain Proteins/genetics , Humans , Male , Ophthalmoplegia/pathology , Pedigree , Phenotype , Polymerase Chain Reaction , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL