Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Dermatol Surg ; 50(1): 62-68, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37815475

ABSTRACT

BACKGROUND: Needle-free hyaluronic acid (HA) jet injectors are gaining popularity for rejuvenation treatment. The devices are widely available online and are used for self-injection or in beauty salons by nonphysicians. However, little is known about their performance and safety. OBJECTIVE: To explore the injection efficiency and cutaneous biodistribution patterns administered with home-use compared with medical jet injectors and to assess safety aspects. MATERIALS AND METHODS: The authors injected HA into ex vivo human skin with 4 home-use and 2 medical injectors. The intracutaneous dose of HA was calculated, and the cutaneous biodistribution of HA was assessed using a 3-dimensional Fluorescent Imaging Cryomicrotome System (3D-FICS). Safety aspects were evaluated based on the presence of a manual, CE (conformité européenne) mark, and sterility. RESULTS: The intracutaneous dose delivered by the home-use injectors was markedly lower compared with the medical injectors. 3D imaging for home-use injectors showed superficial epidermal distribution with low distribution volumes. For medical injectors, volumes were substantially larger and mainly middermal. All evaluated safety aspects were lacking. CONCLUSION: Results of this study suggest that the specific combinations of home-use injectors and HA used in this study are unreliable and unsafe, which casts doubts on the performance of these treatments in general.


Subject(s)
Hyaluronic Acid , Skin , Humans , Hyaluronic Acid/adverse effects , Hyaluronic Acid/metabolism , Injections, Jet/methods , Tissue Distribution , Skin/metabolism , Administration, Cutaneous
2.
MAGMA ; 36(5): 701-709, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36820958

ABSTRACT

OBJECTIVE: Quantitative extracellular volume fraction (ECV) mapping with MRI is commonly used to investigate in vivo diffuse myocardial fibrosis. This study aimed to validate ECV measurements against ex vivo histology of myocardial tissue samples from patients with aortic valve stenosis or hypertrophic cardiomyopathy. MATERIALS AND METHODS: Sixteen patients underwent MRI examination at 3 T to acquire native T1 maps and post-contrast T1 maps after gadobutrol administration, from which hematocrit-corrected ECV maps were estimated. Intra-operatively obtained myocardial tissue samples from the same patients were stained with picrosirius red for quantitative histology of myocardial interstitial fibrosis. Correlations between in vivo ECV and ex vivo myocardial collagen content were evaluated with regression analyses. RESULTS: Septal ECV was 30.3% ± 4.6% and correlated strongly (n = 16, r = 0.70; p = 0.003) with myocardial collagen content. Myocardial native T1 values (1206 ± 36 ms) did not correlate with septal ECV (r = 0.41; p = 0.111) or with myocardial collagen content (r = 0.32; p = 0.227). DISCUSSION: We compared myocardial ECV mapping at 3 T against ex vivo histology of myocardial collagen content, adding evidence to the notion that ECV mapping is a surrogate marker for in vivo diffuse myocardial fibrosis.


Subject(s)
Aortic Valve Stenosis , Cardiomyopathies , Cardiomyopathy, Hypertrophic , Humans , Magnetic Resonance Imaging, Cine , Predictive Value of Tests , Biopsy , Reproducibility of Results , Myocardium/pathology , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/pathology , Magnetic Resonance Imaging , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/pathology , Collagen , Fibrosis , Magnetic Resonance Spectroscopy , Contrast Media
3.
Stroke ; 50(6): 1590-1594, 2019 06.
Article in English | MEDLINE | ID: mdl-31136287

ABSTRACT

Background and Purpose- We developed a rat model of silent brain infarcts based on microsphere infusion and investigated their impact on perfusion and tissue damage. Second, we studied the extent and mechanisms of perfusion recovery. Methods- At day 0, 15 µm fluorescent microspheres were injected into the right common carotid artery of F344 rats. At days 1, 7, or 28, the brain was removed, cut in 100-µm cryosections, and processed for immunofluorescent staining and analysis. Results- Injection of microspheres caused mild and transient damage to the treated hemisphere, with a decrease in perfused capillary volume at day 1, as compared with the untreated hemisphere. At day 1 but not at days 7 and 28, we observed IgG staining outside of the vessels, indicating vessel leakage. All microspheres were located inside the lumen of the vessels at day 1, whereas the vast majority (≈80%) of the microspheres were extravascular at day 7, and 100% at day 28. This was accompanied by restoration of perfused capillary volume. Conclusions- Microspheres cause mild and transient damage, and effective extravasation mechanisms exist in the brain to clear microsized emboli from the vessels.


Subject(s)
Brain Infarction , Microspheres , Animals , Brain Infarction/chemically induced , Brain Infarction/metabolism , Brain Infarction/pathology , Disease Models, Animal , Male , Rats , Rats, Inbred F344
4.
Microsc Microanal ; 23(1): 77-87, 2017 02.
Article in English | MEDLINE | ID: mdl-28228173

ABSTRACT

Development of collateral vessels, arteriogenesis, may protect against tissue ischemia, however, quantitative data on this process remain scarce. We have developed a technique for replicating the entire arterial network of ischemic rat hindlimbs in three dimensions (3D) based on vascular casting and automated sequential cryo-imaging. Various dilutions of Batson's No. 17 with methyl methacrylate were evaluated in healthy rats, with further protocol optimization in ischemic rats. Penetration of the resin into the vascular network greatly depended on dilution; the total length of casted vessels below 75 µm was 13-fold higher at 50% dilution compared with the 10% dilution. Dilutions of 25-30%, with transient clamping of the healthy iliac artery, were optimal for imaging the arterial network in unilateral ischemia. This protocol completely filled the lumina of small arterioles and collateral vessels. These appeared as thin anastomoses in healthy legs and increasingly larger vessels during ligation (median diameter 1 week: 63 µm, 4 weeks: 127 µm). The presented combination of quality casts with high-resolution cryo-imaging enables automated, detailed 3D analysis of collateral adaptation, which furthermore can be combined with co-registered 3D distributions of fluorescent molecular imaging markers reflecting biological activity or perfusion.


Subject(s)
Blood Vessels/diagnostic imaging , Blood Vessels/pathology , Hindlimb/blood supply , Hindlimb/diagnostic imaging , Imaging, Three-Dimensional/methods , Ischemia/diagnostic imaging , Ischemia/pathology , Animals , Arterioles/diagnostic imaging , Arterioles/pathology , Corrosion Casting , Epoxy Resins , Histological Techniques/methods , Ligation , Male , Methylmethacrylates/chemistry , Rats , Rats, Sprague-Dawley
5.
J Vasc Res ; 52(2): 103-15, 2015.
Article in English | MEDLINE | ID: mdl-26184661

ABSTRACT

Vasospasm is known to contribute to delayed cerebral ischemia following subarachnoid hemorrhage (SAH). We hypothesized that vasospasm initiates structural changes within the vessel wall, possibly aggravating ischemia and leading to resistance to vasodilator treatment. We therefore investigated the effect of blood on cerebral arteries with respect to contractile activation and vascular remodeling. In vitro experiments on rodent basilar and middle cerebral arteries showed a gradual contraction in response to overnight exposure to blood. After incubation with blood, a clear inward remodeling was found, reducing the caliber of the passive vessel. The transglutaminase inhibitor L682.777 fully prevented this remodeling. Translation of the in vitro findings to an in vivo SAH model was attempted in rats, using both a single prechiasmatic blood injection model and a double cisterna magna injection model, and in mice, using a single prechiasmatic blood injection. However, we found no substantial changes in active or passive biomechanical properties in vivo. We conclude that extravascular blood can induce matrix remodeling in cerebral arteries, which reduces vascular caliber. This remodeling depends on transglutaminase activity. However, the current rodent SAH models do not permit in vivo confirmation of this mechanism.


Subject(s)
Middle Cerebral Artery/physiopathology , Subarachnoid Hemorrhage/physiopathology , Vascular Remodeling , Vasospasm, Intracranial/physiopathology , Animals , Biomechanical Phenomena , Blood Flow Velocity , Cerebrovascular Circulation , Disease Models, Animal , Enzyme Inhibitors/pharmacology , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Cerebral Artery/drug effects , Middle Cerebral Artery/enzymology , Middle Cerebral Artery/pathology , Protein Glutamine gamma Glutamyltransferase 2 , Rats, Wistar , Regional Blood Flow , Subarachnoid Hemorrhage/enzymology , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/pathology , Transglutaminases/antagonists & inhibitors , Transglutaminases/genetics , Transglutaminases/metabolism , Vascular Remodeling/drug effects , Vasoconstriction , Vasospasm, Intracranial/enzymology , Vasospasm, Intracranial/genetics , Vasospasm, Intracranial/pathology
6.
Angew Chem Int Ed Engl ; 53(24): 6272-5, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24847728

ABSTRACT

No forensic method exists that can reliably estimate the age of fingermarks found at a crime scene. Information on time passed since fingermark deposition is desired as it can be used to distinguish between crime related and unrelated fingermarks and to support or refute statements made by the fingermark donors. We introduce a non-contact method that can estimate the age of fingermarks. Fingermarks were approached as protein-lipid mixtures and an age-estimation model was build based on the expected protein and lipid oxidation reactions. Two measures of oxidation are required from the fingermark to estimate its age: 1) the relative amount of fluorescent oxidation products 2) the rate at which these products are formed. Fluorescence spectroscopy was used to obtain these measures. We tested the method on 44 fingermarks and were able to estimate the age of 55% of the male fingermarks, up to three weeks old with an uncertainty of 1.9 days.


Subject(s)
Dermatoglyphics , Spectrometry, Fluorescence/methods , Age Factors , Oxidation-Reduction
7.
Arch Dermatol Res ; 316(7): 368, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850361

ABSTRACT

Intralesional corticosteroid injections are a first-line treatment for keloids; yet clinical treatment results are highly variable and often suboptimal. Variation in triamcinolone acetonide (TAC) biodistribution may be an important reason for the variable effects of TAC treatment in keloids. In this exploratory study we investigated the biodistribution of TAC in keloids and normal skin using different drug delivery techniques. Fluorescent-labeled TAC suspension was administered into keloids and normal skin with a hypodermic needle and an electronic pneumatic jet injector. TAC biodistribution was represented by the fluorescent TAC volume and 3D biodistribution shape of TAC, using a 3D-Fluorescence-Imaging Cryomicrotome System. Twenty-one keloid and nine normal skin samples were analyzed. With needle injections, the mean fluorescent TAC volumes were 990 µl ± 479 in keloids and 872 µl ± 227 in normal skin. With the jet injector, the mean fluorescent TAC volumes were 401 µl ± 252 in keloids and 249 µl ± 67 in normal skin. 3D biodistribution shapes of TAC were highly variable in keloids and normal skin. In conclusion, TAC biodistribution in keloids is highly variable for both needle and jet injection. This may partly explain the variable treatment effects of intralesional TAC in keloids. Future research is needed to confirm this preliminary finding and to optimize drug delivery in keloids.


Subject(s)
Keloid , Triamcinolone Acetonide , Keloid/drug therapy , Keloid/pathology , Humans , Triamcinolone Acetonide/pharmacokinetics , Triamcinolone Acetonide/administration & dosage , Adult , Female , Tissue Distribution , Male , Middle Aged , Injections, Intralesional , Skin/metabolism , Skin/pathology , Skin/diagnostic imaging , Cryoultramicrotomy/methods , Young Adult , Imaging, Three-Dimensional , Drug Delivery Systems/methods
8.
Placenta ; 151: 19-25, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657321

ABSTRACT

INTRODUCTION: Placental insufficiency may lead to preeclampsia and fetal growth restriction. There is no cure for placental insufficiency, emphasizing the need for monitoring fetal and placenta health. Current monitoring methods are limited, underscoring the necessity for imaging techniques to evaluate fetal-placental perfusion and oxygenation. This study aims to use MRI to evaluate placental oxygenation and perfusion in the reduced uterine perfusion pressure (RUPP) model of placental insufficiency. METHODS: Pregnant rats were randomized to RUPP (n = 11) or sham surgery (n = 8) on gestational day 14. On gestational day 19, rats imaged using a 7T MRI scanner to assess oxygenation and perfusion using T2* mapping and 3D-DCE MRI sequences, respectively. The effect of the RUPP on the feto-placental units were analyzed from the MRI images. RESULTS: RUPP surgery led to reduced oxygenation in the labyrinth (24.7 ± 1.8 ms vs. 28.0 ± 2.1 ms, P = 0.002) and junctional zone (7.0 ± 0.9 ms vs. 8.1 ± 1.1 ms, P = 0.04) of the placenta, as indicated by decreased T2* values. However, here were no significant differences in fetal organ oxygenation or placental perfusion between RUPP and sham animals. DISCUSSION: The reduced placental oxygenation without a corresponding decrease in perfusion suggests an adaptive response to placental ischemia. While acute reduction in placental perfusion may cause placental hypoxia, persistence of this condition could indicate chronic placental insufficiency after ischemic reperfusion injury. Thus, placental oxygenation may be a more reliable biomarker for assessing fetal condition than perfusion in hypertensive disorders of pregnancies including preeclampsia and FGR.


Subject(s)
Disease Models, Animal , Magnetic Resonance Imaging , Oxygen , Placenta , Placental Insufficiency , Rats, Sprague-Dawley , Animals , Pregnancy , Female , Placental Insufficiency/diagnostic imaging , Placental Insufficiency/metabolism , Magnetic Resonance Imaging/methods , Placenta/diagnostic imaging , Placenta/metabolism , Placenta/blood supply , Rats , Oxygen/metabolism , Placental Circulation/physiology , Imaging, Three-Dimensional/methods , Contrast Media
9.
J Vasc Res ; 50(3): 249-62, 2013.
Article in English | MEDLINE | ID: mdl-23839207

ABSTRACT

Small artery remodeling may involve a shift in the diameter-dependent force generating capacity of smooth muscle cells (SMC). We tested to what extent and under which conditions such contractile plasticity occurs. Rat mesenteric arteries were mounted on isometric myographs. Active diameter-tension relations were determined after application of several stimuli for 16 or 40 h at 40 or 110% of the passive diameter at 100 mm Hg. At 40%, 16-hour incubation with endothelin-1 (ET-1) but not U46619 shifted force capacity towards smaller diameters. Inflammatory cytokines (TNF-α, IL-1ß, IFN-γ), TGF-ß or serum neither induced such shift nor augmented the effect of ET-1. The ET-1-mediated change was not affected by superoxide dismutase and catalase. Inward matrix remodeling in the presence of ET-1 was slower, occurring after 40 h. Arteries maintained at 110% showed a shift of force capacity to larger diameters, which was prevented by ET-1 but not by U46619. In the active but not the passive state, SMC had altered nuclear lengths after incubation at 40%. These data demonstrate contractile plasticity in small arteries, where chronic strain is an outward drive and specifically ET-1 an inward drive, acting through mechanisms that do not seem to relate to oxidative stress, inflammatory pathways or major reorganization of the SMC.


Subject(s)
Cytokines/pharmacology , Mesenteric Arteries/physiology , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Vasoconstrictor Agents/pharmacology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Animals , Cell Nucleus/ultrastructure , Endothelin-1/pharmacology , Inflammation , Male , Mesenteric Arteries/anatomy & histology , Muscle, Smooth, Vascular/ultrastructure , Oxidative Stress , Rats , Rats, Wistar
10.
Methods Appl Fluoresc ; 12(1)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37879326

ABSTRACT

Detection and identification of body fluids are crucial aspects of forensic investigations, aiding in crime scene reconstructions and providing important leads. Although many methods have been developed for these purposes, no method is currently in use in the forensic field that allows rapid, non-contact detection and identification of vaginal fluids directly at the crime scene. The development of such technique is mainly challenged by the complex chemistry of the constituents, which can differ between donors and exhibits changes based on woman's menstrual cycle. The use of fluorescence spectroscopy has shown promise in this area for other biological fluids. Therefore, the aim of this study was to identify specific fluorescent signatures of vaginal fluid with fluorescence spectroscopy to allow on-site identification. Additionally, the fluorescent properties were monitored over time to gain insight in the temporal changes of the fluorescent spectra of vaginal fluid. The samples were excited at wavelengths ranging from 200 to 600 nm and the induced fluorescence emission was measured from 220 to 700 nm. Excitation and emission maps (EEMs) were constructed for eight donors at seven time points after donation. Four distinctive fluorescence peaks could be identified in the EEMs, indicating the presence of proteins, fluorescent oxidation products (FOX), and an unidentified component as the dominant contributors to the fluorescence. To further asses the fluorescence characteristics of vaginal fluid, the fluorescent signatures of protein and FOX were used to monitor protein and lipid oxidation reactions over time. The results of this study provide insights into the intrinsic fluorescent properties of vaginal fluid over time which could be used for the development of a detection and identification method for vaginal fluids. Furthermore, the observed changes in fluorescence signatures over time could be utilized to establish an accurate ageing model.


Subject(s)
Body Fluids , Humans , Female , Forensic Medicine/methods , Aging
11.
Sci Rep ; 13(1): 3481, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859481

ABSTRACT

Midlife hypertension is an important risk factor for cognitive impairment and dementia, including Alzheimer's disease. We investigated the effects of long-term treatment with two classes of antihypertensive drugs to determine whether diverging mechanisms of blood pressure lowering impact the brain differently. Spontaneously hypertensive rats (SHR) were either left untreated or treated with a calcium channel blocker (amlodipine) or beta blocker (atenolol) until one year of age. The normotensive Wistar Kyoto rat (WKY) was used as a reference group. Both drugs lowered blood pressure equally, while only atenolol decreased heart rate. Cerebrovascular resistance was increased in SHR, which was prevented by amlodipine but not atenolol. SHR showed a larger carotid artery diameter with impaired pulsatility, which was prevented by atenolol. Cerebral arteries demonstrated inward remodelling, stiffening and endothelial dysfunction in SHR. Both treatments similarly improved these parameters. MRI revealed that SHR have smaller brains with enlarged ventricles. In addition, neurofilament light levels were increased in cerebrospinal fluid of SHR. However, neither treatment affected these parameters. In conclusion, amlodipine and atenolol both lower blood pressure, but elicit a different hemodynamic profile. Both medications improve cerebral artery structure and function, but neither drug prevented indices of brain damage in this model of hypertension.


Subject(s)
Hypertension , Hypotension , Rats , Animals , Antihypertensive Agents , Rats, Inbred SHR , Atenolol , Amlodipine , Rats, Inbred WKY , Carotid Artery, Common
12.
Front Neurosci ; 15: 631325, 2021.
Article in English | MEDLINE | ID: mdl-33867918

ABSTRACT

The hippocampus is susceptible to protein aggregation in neurodegenerative diseases such as Alzheimer's disease. This protein accumulation is partially attributed to an impaired clearance; however, the removal pathways for fluids and waste products are not fully understood. The aim of this study was therefore to map the clearance pathways from the mouse brain. A mixture of two fluorescently labeled tracers with different molecular weights was infused into the hippocampus. A small subset of mice (n = 3) was sacrificed directly after an infusion period of 10 min to determine dispersion of the tracer due to the infusion, while another group was sacrificed after spreading of the tracers for an additional 80 min (n = 7). Upon sacrifice, mice were frozen and sectioned as a whole by the use of a custom-built automated imaging cryomicrotome. Detailed 3D reconstructions were created to map the tracer spreading. We observed that tracers distributed over the hippocampus and entered adjacent brain structures, such as the cortex and cerebroventricular system. An important clearance pathway was found along the ventral part of the hippocampus and its bordering interpeduncular cistern. From there, tracers left the brain via the subarachnoid spaces in the directions of both the nose and the spinal cord. Although both tracers followed the same route, the small tracer distributed further, implying a major role for diffusion in addition to convection. Taken together, these results reveal an important clearance pathway of solutes from the hippocampus.

13.
Front Cardiovasc Med ; 8: 744779, 2021.
Article in English | MEDLINE | ID: mdl-34765656

ABSTRACT

Background: The majority of data regarding tissue substrate for post myocardial infarction (MI) VT has been collected during hemodynamically tolerated VT, which may be distinct from the substrate responsible for VT with hemodynamic compromise (VT-HC). This study aimed to characterize tissue at diastolic locations of VT-HC in a porcine model. Methods: Late Gadolinium Enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging was performed in eight pigs with healed antero-septal infarcts. Seven pigs underwent electrophysiology study with venous arterial-extra corporeal membrane oxygenation (VA-ECMO) support. Tissue thickness, scar and heterogeneous tissue (HT) transmurality were calculated at the location of the diastolic electrograms of mapped VT-HC. Results: Diastolic locations had median scar transmurality of 33.1% and a median HT transmurality 7.6%. Diastolic activation was found within areas of non-transmural scar in 80.1% of cases. Tissue activated during the diastolic component of VT circuits was thinner than healthy tissue (median thickness: 5.5 mm vs. 8.2 mm healthy tissue, p < 0.0001) and closer to HT (median distance diastolic tissue: 2.8 mm vs. 11.4 mm healthy tissue, p < 0.0001). Non-scarred regions with diastolic activation were closer to steep gradients in thickness than non-scarred locations with normal EGMs (diastolic locations distance = 1.19 mm vs. 9.67 mm for non-diastolic locations, p < 0.0001). Sites activated late in diastole were closest to steep gradients in tissue thickness. Conclusions: Non-transmural scar, mildly decreased tissue thickness, and steep gradients in tissue thickness represent the structural characteristics of the diastolic component of reentrant circuits in VT-HC in this porcine model and could form the basis for imaging criteria to define ablation targets in future trials.

14.
Am J Physiol Heart Circ Physiol ; 298(4): H1273-82, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20154263

ABSTRACT

Hypertension is associated with chronic vascular inflammation. We tested the hypothesis that the sensitivity to develop hypertension and vascular remodeling depends on the immunological background. Blood pressure, vascular remodeling, endothelial function, vascular architecture (number of collateral arteries), and expression of inflammatory cytokines were determined in mice that received N(G)-nitro-l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthesis. We studied C57BL/6, BALB/c, and BALB.B6-Cmv1r mice, a congenic strain where the natural killer (NK) gene complex of C57BL/6 mice is introduced in the BALB/c background. During a 4-wk treatment with l-NAME, blood pressure initially increased in both C57BL/6 and BALB/C mice, but after 4 wk, only C57BL/6 mice showed a significant increase in mean arterial blood pressure (+53 mmHg; P < 0.001) and small artery inward remodeling. Endothelial function and vascular design were significantly different between C57BL/6 mice and BALB/C mice. The inflammatory response was similar in C57BL/6 and BALB/C mice, except for the leukocyte marker CD11b. Cellular colocalization of CD11b with NK1.1 indicated the recruitment of NK cells in C57BL/6 mice. Congenic BALB.B6-Cmv1r mice showed the same endothelial response and vascular architecture as BALB/c mice. However, BALB.B6-Cmv1r mice displayed a similar sensitivity to hypertension and vascular remodeling as C57BL/6 mice. In conclusion, we have identified the NK gene complex as an important determinant in the genetically determined sensitivity to develop l-NAME-induced hypertension in mice.


Subject(s)
Antigens, Ly/genetics , CD11b Antigen/genetics , Genetic Predisposition to Disease/genetics , Hypertension/genetics , NK Cell Lectin-Like Receptor Subfamily B/genetics , Animals , Antigens, Ly/metabolism , Blood Pressure/drug effects , Blood Pressure/physiology , CD11b Antigen/metabolism , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , Hypertension/chemically induced , Hypertension/metabolism , Male , Mice , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred C57BL , NG-Nitroarginine Methyl Ester/adverse effects , NG-Nitroarginine Methyl Ester/pharmacology , NK Cell Lectin-Like Receptor Subfamily B/metabolism
15.
Am J Pathol ; 175(4): 1374-9, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19717636

ABSTRACT

Transglutaminases play an important role in vascular smooth muscle cell-induced calcification in vitro. In this study, we determined whether these enzymes are also involved in human atherosclerotic calcification using nine carotid artery specimens obtained at endarterectomy. Sections of the carotid artery specimens were registered to micro-computed tomography images and stained for tissue-type transglutaminase, plasma transglutaminase factor XIIIA (FXIIIA), the N(epsilon)(gamma-glutamyl)lysine cross-link, and the macrophage marker CD68. Ex vivo micro-computed tomography revealed extensive calcification, which significantly correlated with the cross-link. FXIIIA was found to be the dominant transglutaminase, rather than tissue-type transglutaminase, although staining of both transglutaminases correlated with the cross-link. Staining for FXIIIA colocalized with CD68 at both the cellular and tissue level. In conclusion, areas of calcification locate to the presence and activity of transglutaminases in human atherosclerotic arteries. FXIIIA seems to be the dominant transglutaminase and may be derived from local macrophages. These results are consistent with the hypothesis that transglutaminases participate in the calcification process of human atherosclerotic arteries.


Subject(s)
Atherosclerosis/enzymology , Atherosclerosis/pathology , Calcinosis/enzymology , Calcinosis/pathology , Atherosclerosis/complications , Calcinosis/complications , Humans , Immunohistochemistry , Transglutaminases
16.
Fluids Barriers CNS ; 17(1): 41, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32590994

ABSTRACT

BACKGROUND: Proper neuronal function is directly dependent on the composition, turnover, and amount of interstitial fluid that bathes the cells. Most of the interstitial fluid is likely to be derived from ion and water transport across the brain capillary endothelium, a process that may be altered in hypertension due to vascular pathologies as endothelial dysfunction and arterial remodelling. In the current study, we investigated the effects of hypertension on the brain for differences in the water homeostasis. METHODS: Magnetic resonance imaging (MRI) was performed on a 7T small animal MRI system on male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) of 10 months of age. The MRI protocol consisted of T2-weighted scans followed by quantitative apparent diffusion coefficient (ADC) mapping to measure volumes of different anatomical structures and water diffusion respectively. After MRI, we assessed the spatial distribution of aquaporin 4 expression around blood vessels. RESULTS: MRI analysis revealed a significant reduction in overall brain volume and remarkably higher cerebroventricular volume in SHR compared to WKY. Whole brain ADC, as well as ADC values of a number of specific anatomical structures, were significantly lower in hypertensive animals. Additionally, SHR exhibited higher brain parenchymal water content. Immunohistochemical analysis showed a profound expression of aquaporin 4 around blood vessels in both groups, with a significantly larger area of influence around arterioles. Evaluation of specific brain regions revealed a decrease in aquaporin 4 expression around capillaries in the corpus callosum of SHR. CONCLUSION: These results indicate a shift in the brain water homeostasis of adult hypertensive rats.


Subject(s)
Aquaporin 4/metabolism , Arterial Pressure , Body Water/diagnostic imaging , Brain , Homeostasis , Hypertension/complications , Animals , Arterial Pressure/physiology , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/metabolism , Corpus Callosum/metabolism , Homeostasis/physiology , Hypertension/physiopathology , Magnetic Resonance Imaging , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY
17.
PLoS One ; 14(7): e0220333, 2019.
Article in English | MEDLINE | ID: mdl-31365577

ABSTRACT

Glycosaminoglycans in the skin interstitium and endothelial surface layer have been shown to be involved in local sodium accumulation without commensurate water retention. Dysfunction of heparan sulfate glycosaminoglycans may therefore disrupt sodium and water homeostasis. In this study, we investigated the effects of combined heterozygous loss of heparan sulfate polymerization genes (exostosin glycosyltransferase 1 and 2; Ext1+/-Ext2+/-) on sodium and water homeostasis. Sodium storage capacity was decreased in Ext1+/-Ext2+/- mice as reflected by a 77% reduction in endothelial surface layer thickness and a lower skin sodium-to-glycosaminoglycan ratio. Also, these mice were characterized by a higher heart rate, increased fluid intake, increased plasma osmolality and a decreased skin water and sodium content, suggesting volume depletion. Upon chronic high sodium intake, the initial volume depletion was restored but no blood pressure increase was observed. Acute hypertonic saline infusion resulted in a distinct blood pressure response: we observed a significant 15% decrease in control mice whereas blood pressure did not change in Ext1+/-Ext2+/- mice. This differential blood pressure response may be explained by the reduced capacity for sodium storage and/or the impaired vasodilation response, as measured by wire myography, which was observed in Ext1+/-Ext2+/- mice. Together, these data demonstrate that defective heparan sulfate glycosaminoglycan synthesis leads to abnormal sodium and water homeostasis and an abnormal response to sodium loading, most likely caused by inadequate capacity for local sodium storage.


Subject(s)
Heparitin Sulfate/chemistry , N-Acetylglucosaminyltransferases/genetics , Sodium/metabolism , Water/metabolism , Animals , Blood Pressure , Electrolytes/blood , Female , Heart Rate , Heterozygote , Male , Mice , Mice, Inbred C57BL , Myography , N-Acetylglucosaminyltransferases/metabolism , Polymerization , Skin/chemistry , Skin/metabolism
18.
J Biophotonics ; 12(9): e201800440, 2019 09.
Article in English | MEDLINE | ID: mdl-31058437

ABSTRACT

Radiation therapy for patients with non-small-cell lung cancer is hampered by acute radiation-induced toxicity in the esophagus. This study aims to validate that optical coherence tomography (OCT), a minimally invasive imaging technique with high resolution (~10 µm), is able to visualize and monitor acute radiation-induced esophageal damage (ARIED) in mice. We compare our findings with histopathology as the gold standard. Irradiated mice receive a single dose of 40 Gy at proximal and distal spots of the esophagus of 10.0 mm in diameter. We scan mice using OCT at two, three, and seven days post-irradiation. In OCT analysis, we define ARIED as a presence of distorted esophageal layering, change in backscattering signal properties, or change in the esophageal wall thickness. The average esophageal wall thickness is 0.53 mm larger on OCT when ARIED is present based on histopathology. The overall sensitivity and specificity of OCT to detect ARIED compared to histopathology are 94% and 47%, respectively. However, the overall sensitivity of OCT to assess ARIED is 100% seven days post-irradiation. We validate the capability of OCT to detect ARIED induced by high doses in mice. Nevertheless, clinical studies are required to assess the potential role of OCT to visualize ARIED in humans.


Subject(s)
Esophagus/injuries , Esophagus/radiation effects , Radiation Injuries, Experimental/diagnostic imaging , Tomography, Optical Coherence/methods , Acute Disease , Animals , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cone-Beam Computed Tomography , Esophagus/pathology , Female , Humans , Lung Neoplasms/radiotherapy , Mice , Radiation Injuries, Experimental/pathology , Radiotherapy/adverse effects , Time Factors
19.
Radiat Res ; 170(2): 184-91, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18666809

ABSTRACT

The repair of ionizing radiation-induced potentially lethal damage (PLD) is suggested to be important for the clinical response to radiotherapy. PLD repair is usually studied in quiescent cultures prepared by growing cells to confluence with an accumulation of cells in G(0) phase of the cell cycle, but the biological pathways enabling PLD repair are still unknown. In this study, we examined whether the controlled expression of two different inducers of G(0) cell cycle arrest, the human tumor suppressor gene growth arrest specific 1 (GAS1) in murine fibroblasts and the forkhead transcription factor FOXO3a in human colon carcinoma cells, is sufficient to enable PLD repair. We found that GAS1 and FOXO3a induced a cell cycle arrest in G(0) phase with a concomitant reduction of proliferation of log-phase cells. In both cell systems, this cell cycle arrest in G(0) phase did not enable PLD repair in log-phase cells. Significant PLD repair was found in all confluent cultures that showed similar cell cycle distributions, while GAS1 and FOXO3a in confluent cells did not influence PLD repair. No differences were found in cell cycle re-entry after replating cells with different capacities for PLD repair. Our data suggest that the induction of G(0) cell cycle arrest and the reduction of proliferation are not sufficient to enable PLD repair.


Subject(s)
Apoptosis/physiology , Apoptosis/radiation effects , Cell Cycle Proteins/metabolism , DNA Repair/physiology , Forkhead Transcription Factors/metabolism , Membrane Proteins/metabolism , Resting Phase, Cell Cycle/physiology , Resting Phase, Cell Cycle/radiation effects , Animals , DNA Repair/radiation effects , Dose-Response Relationship, Radiation , Forkhead Box Protein O3 , GPI-Linked Proteins , Mice , NIH 3T3 Cells , Radiation Dosage
20.
J Cereb Blood Flow Metab ; 38(4): 719-726, 2018 04.
Article in English | MEDLINE | ID: mdl-29039724

ABSTRACT

Clearance of waste products from the brain is of vital importance. Recent publications suggest a potential clearance mechanism via paravascular channels around blood vessels. Arterial pulsations might provide the driving force for paravascular flow, but its flow pattern remains poorly characterized. In addition, the relationship between paravascular flow around leptomeningeal vessels and penetrating vessels is unclear. In this study, we determined blood flow and diameter pulsations through a thinned-skull cranial window. We observed that microspheres moved preferentially in the paravascular space of arteries rather than in the adjacent subarachnoid space or around veins. Paravascular flow was pulsatile, generated by the cardiac cycle, with net antegrade flow. Confocal imaging showed microspheres distributed along leptomeningeal arteries, while their presence along penetrating arteries was limited to few vessels. These data suggest that paravascular spaces around leptomeningeal arteries form low resistance pathways on the surface of the brain that facilitate cerebrospinal fluid flow.


Subject(s)
Brain/physiology , Cerebrospinal Fluid/physiology , Animals , Blood Flow Velocity/physiology , Blood Volume , Brain/anatomy & histology , Cerebral Arteries/physiology , Cerebrovascular Circulation/physiology , Intracranial Pressure/physiology , Male , Meninges/blood supply , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microspheres , Subarachnoid Space/blood supply , Subarachnoid Space/physiology
SELECTION OF CITATIONS
SEARCH DETAIL