Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Acta Neuropathol ; 148(1): 24, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160362

ABSTRACT

The retina is increasingly recognised as a potential source of biomarkers for neurodegenerative diseases. Hallmark protein aggregates in the retinal neuronal tissue could be imaged through light non-invasively. Post-mortem studies have already shown the presence of specific hallmark proteins in Alzheimer's disease, primary tauopathies, synucleinopathies and frontotemporal lobar degeneration. This study aims to assess proteinopathy in a post-mortem cohort with different neurodegenerative diseases and assess the presence of the primary pathology in the retina. Post-mortem eyes were collected in collaboration with the Netherlands Brain Bank from donors with Alzheimer's disease (n = 17), primary tauopathies (n = 8), synucleinopathies (n = 27), frontotemporal lobar degeneration (n = 8), mixed pathology (n = 11), other neurodegenerative diseases (n = 6), and cognitively normal controls (n = 25). Multiple cross sections of the retina and optic nerve tissue were immunostained using antibodies against pTau Ser202/Thr205 (AT8), amyloid-beta (4G8), alpha-synuclein (LB509), pTDP-43 Ser409/410 and p62-lck ligand (p62) and were assessed for the presence of aggregates and inclusions. pTau pathology was observed as a diffuse signal in Alzheimer's disease, primary tauopathies and controls with Alzheimer's disease neuropathological changes. Amyloid-beta was observed in the vessel wall and as cytoplasmic granular deposits in all groups. Alpha-synuclein pathology was observed as Lewy neurites in the retina in synucleinopathies associated with Lewy pathology and as oligodendroglial cytoplasmic inclusions in the optic nerve in multiple system atrophy. Anti-pTDP-43 generally showed typical neuronal cytoplasmic inclusion bodies in cases with frontotemporal lobar degeneration with TDP-43 and also in cases with later stages of limbic-associated TDP-43 encephalopathy. P62 showed inclusion bodies similar to those seen with anti-pTDP-43. Furthermore, pTau and alpha-synuclein pathology were significantly associated with increasing Braak stages for neurofibrillary tangles and Lewy bodies, respectively. Mixed pathology cases in this cohort consisted of cases (n = 6) with high Braak LB stages (> 4) and low or moderate AD pathology, high AD pathology (n = 1, Braak NFT 6, Thal phase 5) with moderate LB pathology, or a combination of low/moderate scores for different pathology scores in the brain (n = 4). There were no cases with advanced co-pathologies. In seven cases with Braak LB ≥ 4, LB pathology was observed in the retina, while tau pathology in the retina in the mixed pathology group (n = 11) could not be observed. From this study, we conclude that the retina reflects the presence of the major hallmark proteins associated with neurodegenerative diseases. Although low or moderate levels of copathology were found in the brains of most cases, the retina primarily manifested protein aggregates associated with the main neurodegenerative disease. These findings indicate that with appropriate retinal imaging techniques, retinal biomarkers have the potential to become highly accurate indicators for diagnosing the major neurodegenerative diseases of the brain.


Subject(s)
Neurodegenerative Diseases , Retina , tau Proteins , Humans , Aged , Female , Male , Retina/pathology , Retina/metabolism , Aged, 80 and over , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/metabolism , tau Proteins/metabolism , Middle Aged , alpha-Synuclein/metabolism , Autopsy , Tauopathies/pathology , Tauopathies/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , DNA-Binding Proteins/metabolism
2.
Alzheimers Dement ; 20(1): 728-740, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37917365

ABSTRACT

There is emerging evidence that amyloid beta protein (Aß) and tau-related lesions in the retina are associated with Alzheimer's disease (AD). Aß and hyperphosphorylated (p)-tau deposits have been described in the retina and were associated with small amyloid spots visualized by in vivo imaging techniques as well as degeneration of the retina. These changes correlate with brain amyloid deposition as determined by histological quantification, positron emission tomography (PET) or clinical diagnosis of AD. However, the literature is not coherent on these histopathological and in vivo imaging findings. One important reason for this is the variability in the methods and the interpretation of findings across different studies. In this perspective, we indicate the critical methodological deviations among different groups and suggest a roadmap moving forward on how to harmonize (i) histopathologic examination of retinal tissue; (ii) in vivo imaging among different methods, devices, and interpretation algorithms; and (iii) inclusion/exclusion criteria for studies aiming at retinal biomarker validation.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Retina/diagnostic imaging , Biomarkers/metabolism , Positron-Emission Tomography/methods , Brain/pathology
3.
Acta Neuropathol ; 145(2): 197-218, 2023 02.
Article in English | MEDLINE | ID: mdl-36480077

ABSTRACT

The retina is a potential source of biomarkers for the detection of neurodegenerative diseases. Accumulation of phosphorylated tau (p-tau) in the brain is a pathological feature characteristic for Alzheimer's disease (AD) and primary tauopathies. In this study the presence of p-tau in the retina in relation to tau pathology in the brain was assessed. Post-mortem eyes and brains were collected through the Netherlands Brain Bank from donors with AD (n = 17), primary tauopathies (n = 8), α-synucleinopathies (n = 13), other neurodegenerative diseases including non-tau frontotemporal lobar degeneration (FTLD) (n = 9), and controls (n = 15). Retina cross-sections were assessed by immunohistochemistry using antibodies directed against total tau (HT7), 3R and 4R tau isoforms (RD3, RD4), and phospho-epitopes Ser202/Thr205 (AT8), Thr217 (anti-T217), Thr212/Ser214 (AT100), Thr181 (AT270), Ser396 (anti-pS396) and Ser422 (anti-pS422). Retinal tau load was compared to p-tau Ser202/Thr205 and p-tau Thr217 load in various brain regions. Total tau, 3R and 4R tau isoforms were most prominently present in the inner plexiform layer (IPL) and outer plexiform layer (OPL) of the retina and were detected in all cases and controls as a diffuse and somatodendritic signal. Total tau, p-tau Ser202/Thr205 and p-tau Thr217 was observed in amacrine and horizontal cells of the inner nuclear layer (INL). Various antibodies directed against phospho-epitopes of tau showed immunoreactivity in the IPL, OPL, and INL. P-tau Ser202/Thr205 and Thr217 showed significant discrimination between AD and other tauopathies, and non-tauopathy cases including controls. Whilst immunopositivity was observed for p-tau Thr212/Ser214, Thr181 and Ser396, there were no group differences. P-tau Ser422 did not show any immunoreactivity in the retina. The presence of retinal p-tau Ser202/Thr205 and Thr217 correlated with Braak stage for NFTs and with the presence of p-tau Ser202/Thr205 in hippocampus and cortical brain regions. Depending on the phospho-epitope, p-tau in the retina is a potential biomarker for AD and primary tauopathies.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Alzheimer Disease/pathology , Phosphorylation , tau Proteins/metabolism , Tauopathies/pathology , Brain/pathology , Retina/pathology , Epitopes
4.
Alzheimers Dement ; 16(1): 229-243, 2020 01.
Article in English | MEDLINE | ID: mdl-31914225

ABSTRACT

The last decade has seen a substantial increase in research focused on the identification, development, and validation of diagnostic and prognostic retinal biomarkers for Alzheimer's disease (AD). Sensitive retinal biomarkers may be advantageous because they are cost and time efficient, non-invasive, and present a minimal degree of patient risk and a high degree of accessibility. Much of the work in this area thus far has focused on distinguishing between symptomatic AD and/or mild cognitive impairment (MCI) and cognitively normal older adults. Minimal work has been done on the detection of preclinical AD, the earliest stage of AD pathogenesis characterized by the accumulation of cerebral amyloid absent clinical symptoms of MCI or dementia. The following review examines retinal structural changes, proteinopathies, and vascular alterations that have been proposed as potential AD biomarkers, with a focus on studies examining the earliest stages of disease pathogenesis. In addition, we present recommendations for future research to move beyond the discovery phase and toward validation of AD risk biomarkers that could potentially be used as a first step in a multistep screening process for AD risk detection.


Subject(s)
Alzheimer Disease/diagnostic imaging , Biomarkers/analysis , Cognitive Dysfunction/diagnostic imaging , Health Knowledge, Attitudes, Practice , Mass Screening , Prodromal Symptoms , Alzheimer Disease/pathology , Amyloid , Humans , Tomography, Optical Coherence
7.
NPJ Parkinsons Dis ; 9(1): 124, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640753

ABSTRACT

There is increasing interest in studying retinal biomarkers for various neurodegenerative diseases. Specific protein aggregates associated with neurodegenerative diseases are present in the retina and could be visualised in a non-invasive way. This study aims to assess the specificity and sensitivity of retinal α-synuclein aggregates in neuropathologically characterised α-synucleinopathies, other neurodegenerative diseases and non-neurological controls. Post-mortem eyes (N = 99) were collected prospectively through the Netherlands Brain Bank from donors with Parkinson's disease (and dementia), dementia with Lewy bodies, multiple system atrophy, Alzheimer's disease, other neurodegenerative diseases and non-neurological controls. Multiple retinal and optic nerve cross-sections were immunostained with anti-α-synuclein antibodies (LB509, KM51, and anti-pSer129) and assessed for aggregates and inclusions. α-Synuclein was observed as Lewy neurites in the retina and oligodendroglial cytoplasmic inclusions in the optic nerve and was highly associated with Lewy body disease (P < 0.001) and multiple system atrophy (P = 0.001). In all multiple system atrophy cases, the optic nerve showed oligodendroglial cytoplasmic inclusions, while retinal Lewy neurites were absent, despite coincidental brain Lewy pathology. With high specificity (97%) and sensitivity (82%), retinal/optic nerve α-synuclein differentiates primary α-synucleinopathies from other cases and controls. α-Synuclein pathology occurs specifically in the retina and optic nerve of primary α-synucleinopathies as opposed to other neurodegenerative diseases-with and without α-synuclein co-pathology-and controls. The absence of retinal Lewy neurites in multiple system atrophy could contribute to the development of an in vivo retinal biomarker that discriminates between Lewy body disease and multiple system atrophy.

8.
Alzheimers Dement (Amst) ; 14(1): e12347, 2022.
Article in English | MEDLINE | ID: mdl-35991218

ABSTRACT

Introduction: Previous work has showed the in vivo presence of retinal amyloid in Alzheimer's disease (AD) patients using curcumin. We aimed to replicate these findings in an amyloid biomarker-confirmed cohort. Methods: Twenty-six patients with AD (age 66 [+9], Mini-Mental Status Examination [MMSE] ≥17) and 14 controls (age 71 [+12]) used one of three curcumin formulations: Longvida, Theracurmin, and Novasol. Plasma levels were determined and pre- and post-curcumin retinal fluorescence scans were assessed visually in all cases and quantitatively assessed in a subset. Results: Visual assessment showed no difference between AD patients and controls for pre- and post-curcumin images. This was confirmed by quantitative analyses on a subset. Mean conjugated plasma curcumin levels were 198.7 nM (Longvida), 576.6 nM (Theracurmin), and 1605.8 nM (Novasol). Discussion: We found no difference in retinal fluorescence between amyloid-confirmed AD cases and control participants, using Longvida and two additional curcumin formulations. Additional replication studies in amyloid-confirmed cohorts are needed to assess the diagnostic value of retinal fluorescence as an AD biomarker.

9.
Prog Retin Eye Res ; 82: 100899, 2021 05.
Article in English | MEDLINE | ID: mdl-32890742

ABSTRACT

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made. While several imaging, cognitive, CSF and blood-based biomarkers have been proposed for the early detection of AD; their sensitivity and specificity in the symptomatic stages is highly variable and it is difficult to justify their use in even earlier, pre-clinical stages of the disease. Research has identified potentially measurable functional, structural, metabolic and vascular changes in the retina during early stages of AD. Retina offers a distinctively accessible insight into brain pathology and current and developing ophthalmic technologies have provided us with the possibility of detecting and characterising subtle, disease-related changes. Recent human and animal model studies have further provided mechanistic insights into the biochemical pathways that are altered in the retina in disease, including amyloid and tau deposition. This information coupled with advances in molecular imaging has allowed attempts to monitor biochemical changes and protein aggregation pathology in the retina in AD. This review summarises the existing knowledge that informs our understanding of the impact of AD on the retina and highlights some of the gaps that need to be addressed. Future research will integrate molecular imaging innovation with functional and structural changes to enhance our knowledge of the AD pathophysiological mechanisms and establish the utility of monitoring retinal changes as a potential biomarker for AD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Animals , Biomarkers , Brain , Early Diagnosis , Humans , Retina/diagnostic imaging
10.
Alzheimers Dement (Amst) ; 11: 383-391, 2019 12.
Article in English | MEDLINE | ID: mdl-31193094

ABSTRACT

Introduction: The retina is a potential source of noninvasive vascular biomarkers for Alzheimer's disease (AD). We assessed retinal microvasculature in well-characterized AD cases, taking ophthalmological confounders into account. Methods: We included 48 amyloid-positive AD patients and 38 amyloid-negative cognitively normal control subjects. All participants underwent ophthalmological screening to exclude interfering ocular disease. Using a multimodal approach, we measured retinal vascular parameters, choroidal thickness, macular vascular density, and foveal avascular zone size. Results: We found no disease effects on retinal vascular measures (all ß's < |0.15|, all P > .2), adjusted for confounders. Venular tortuosity was inversely associated with Fazekas score in control subjects (ß -0.56, P < .01), while vessel density in the outer ring of the macula was inversely associated with Fazekas score in AD cases (ß -0.64, P < .01). Discussion: In conclusion, retinal vasculature did not discriminate patients with AD from control subjects, despite evident changes on clinical, neuroimaging, and cerebrospinal fluid biomarkers, challenging the use of retinal vasculature measurements as AD biomarker.

11.
Alzheimers Dement (Amst) ; 11: 463-471, 2019 12.
Article in English | MEDLINE | ID: mdl-31249859

ABSTRACT

Introduction: Retinal thickness measured with optical coherence tomography has been proposed as a noninvasive biomarker for Alzheimer's disease (AD). We therefore measured retinal thickness in well-characterized AD and control participants, considering ophthalmological confounders. Methods: We included 57 amyloid-proven AD cases and 85 cognitively normal, amyloid-negative controls. All subjects underwent retinal thickness measurements with spectral domain optical coherence tomography and an ophthalmological assessment to exclude ocular disease. Results: Retinal thickness did not discriminate cases from controls, including stratified analyses for early- versus late-onset AD. We found significant associations between macular thickness and global cortical atrophy [ß -0.358; P = .01] and parietal cortical atrophy on magnetic resonance imaging [ß -0.371; P < .01] in AD cases. Discussion: In this study, representing the largest optical coherence tomography cohort with amyloid-proven AD cases, we show that retinal thickness does not discriminate AD from controls, despite evident changes on clinical, neuroimaging, and CSF measures, querying the use of retinal thickness measurements as an AD biomarker.

12.
Alzheimers Res Ther ; 11(1): 62, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31319885

ABSTRACT

BACKGROUND: Retinal thickness can be measured non-invasively with optical coherence tomography (OCT) and may offer compelling potential as a biomarker for Alzheimer's disease (AD). Retinal thinning is hypothesized to be a result of retrograde atrophy and/or parallel neurodegenerative processes. Changes in the visual pathway are of particular interest in posterior cortical atrophy (PCA), the most common atypical AD phenotype predominantly affecting the parietal-occipital cortices. We therefore evaluated retinal thickness as non-invasive biomarker of neurodegeneration in well-characterized participants with posterior cortical atrophy (PCA) and typical Alzheimer's disease (tAD). METHODS: Retinal thickness measures were acquired from 48 patient participants (N = 25 PCA; N = 23 tAD) fulfilling consensus diagnostic criteria and 70 age-matched controls. Participants were recruited between 2014 and 2016. All participants underwent optical coherence tomography (OCT) imaging, including measurement of peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular thickness (mRT). Participants did not show evidence of any significant ophthalmological conditions. Subgroup analyses were performed in participants with available MRI and CSF measures, providing evidence of neurodegeneration and underlying AD pathology respectively. RESULTS: There was no evidence of overall between-group differences in pRNFL thickness (mean PCA 98.7 ± 12.2; tAD 99.9 ± 8.7; controls 99.6 ± 10.0 µm, one-way analysis of variance (ANOVA) p = 0.92) or total mRT (mean PCA 266.9 ± 16.3; tAD 267.8 ± 13.6; controls 269.3 ± 13.6 µm, one-way ANOVA p = 0.75). Similarly, subgroup analysis with MRI biomarkers (PCA = 18, tAD = 17, controls = 31) showing neurodegeneration, and CSF biomarkers (PCA = 18, tAD = 14, controls = 13) supporting underlying AD pathology did not provide evidence of overall between-group differences in pRNFL or mRT measures (all p > 0.3). CONCLUSIONS: Retinal thickness did not discriminate tAD and PCA from controls or from one another despite unequivocal differences on standard clinical, neuro-imaging and CSF measures. Findings from this well-characterized sample, including cases with PCA, do not support the hypothesis that retinal neurodegeneration, measured using conventional OCT, is a useful biomarker for AD or PCA.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Occipital Lobe/pathology , Parietal Lobe/pathology , Retina/diagnostic imaging , Retina/pathology , Aged , Atrophy , Biomarkers , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Occipital Lobe/diagnostic imaging , Parietal Lobe/diagnostic imaging , Tomography, Optical Coherence , Visual Pathways/diagnostic imaging , Visual Pathways/pathology
13.
Acta Ophthalmol ; 97(8): 798-804, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31058465

ABSTRACT

PURPOSE: There is urgent need for non-invasive diagnostic biomarkers in the preclinical phase of Alzheimer's Disease (AD). Several studies suggest that retinal thickness is reduced in AD. Here, we aim to test the diagnostic value of retinal thickness in preclinical AD, as defined by cognitively normal individuals with amyloid pathology on PET. METHODS: One hundred and sixty five cognitively healthy monozygotic twins aged ≥ 60 were included from the Netherlands Twin Register taking part in the European Medical Information Framework for Alzheimer's Disease PreclinAD study. Participants underwent [18 F] flutemetamol PET that was visually rated for presence or absence of cortical amyloid beta (Aß). Binding potential (BPND ) was calculated as continuous measure for Aß. Spectral Domain OCT was used to asses total and individual inner retinal layer thickness in the macular region (ETDRS circles) as well as peripapillary retinal nerve fibre layer (pRNFL) thickness. Differences between Aß+ and Aß- individuals and associations between BPND and retinal thickness were analyzed. RESULTS: No differences were found in retinal layer thickness in the macula or pRNFL between Aß+ and Aß- individuals. A positive associations between BPND and macular total retinal thickness was observed in the inner ring (p = 0.018), but this was not statistically significant after correction for multiple testing (p = 0.144). Brain/eye parameters had moderate to high intra-twin correlations (p < 0.001) except visual rating score of Aß, which did not correlate (r = 0.21, p = 0.068). CONCLUSION: Variation in retinal thickness likely reflects genetic differences between individuals, but cannot discriminate between healthy and preclinical AD cases, making its use as biomarker in these early stages limited.


Subject(s)
Alzheimer Disease/diagnosis , Macula Lutea/pathology , Tomography, Optical Coherence/methods , Aged , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Retinal Ganglion Cells/pathology
14.
Alzheimers Dement (Amst) ; 10: 49-55, 2018.
Article in English | MEDLINE | ID: mdl-29201990

ABSTRACT

INTRODUCTION: The retina may reflect Alzheimer's disease (AD) neuropathological changes and is easily visualized with optical coherence tomography (OCT). Retinal thickness decrease has been correlated to AD, however, without information on amyloid status. We correlated retinal (layer) thickness to AD biomarkers in amyloid-positive early-onset AD (EOAD) patients and amyloid-negative controls. METHODS: We measured macular thickness and peripapillary retinal nerve fiber layer thickness with OCT in 15 EOAD patients and 15 controls and correlated retinal thickness to visual rating scores for atrophy on magnetic resonance imaging. RESULTS: Total macular thickness correlated to parietal cortical atrophy in both groups (Spearman ρ -0.603, P = .001). Macular and peripapillary retinal nerve fiber layer thicknesses were not significantly decreased in EOAD compared to controls. DISCUSSION: Retinal thickness does not discriminate EOAD from controls but is correlated to parietal cortical atrophy in both groups. These findings may suggest reflection of cerebral cortical changes in the retina, independent of amyloid.

15.
Acta Neuropathol Commun ; 6(1): 75, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30092839

ABSTRACT

The combined fluorescent and Aß-binding properties of the dietary spice curcumin could yield diagnostic purpose in the search for a non-invasive Aß-biomarker for Alzheimer's disease (AD). However, evidence on the binding properties of curcumin, its conjugates and clinically used bio-available formulations to AD neuropathological hallmarks is scarce. We therefore assessed the binding properties of different curcumin forms to different neuropathological deposits in post-mortem brain tissue of cases with AD, other neurodegenerative diseases, and controls. Post mortem brain tissue was histochemically assessed for the binding of curcumin, its isoforms, conjugates and bio-available forms and compared to routinely used staining methods. For this study we included brains of early onset AD, late onset AD, primary age-related tauopathy (PART), cerebral amyloid angiopathy (CAA), frontotemporal lobar degeneration (FTLD) with tau or TAR DNA-binding protein 43 (TDP-43) inclusions, dementia with Lewy bodies (DLB), Parkinson's disease (PD) and control cases without brain pathology. We found that curcumin binds to fibrillar amyloid beta (Aß) in plaques and CAA. It does not specifically bind to inclusions of protein aggregates in FTLD-tau cases, TDP-43, or Lewy bodies. Curcumin isoforms, conjugates and bio-available forms show affinity for the same Aß structures. Curcumin staining overlaps with immunohistochemical detection of Aß in fibrillar plaques and CAA, and to a lesser extent cored plaques. A weak staining of neurofibrillary tangles was observed, while other structures immunopositive for phosphorylated tau remained negative. In conclusion, curcumin, its isoforms, conjugates and bio-available forms selectively bind fibrillar Aß in plaques and CAA in post mortem AD brain tissue. Curcumin, being a food additive with fluorescent properties, is therefore an interesting candidate for in-vivo diagnostics in AD, for example in retinal fluorescent imaging.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Brain/drug effects , Curcumin/pharmacology , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Autopsy , Cerebral Amyloid Angiopathy/pathology , Curcumin/classification , DNA-Binding Proteins/metabolism , Female , Frontotemporal Lobar Degeneration/pathology , Humans , Male , Middle Aged , Neurofibrillary Tangles/drug effects , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology , Protein Binding/drug effects , Retrospective Studies , Tauopathies/pathology , tau Proteins/metabolism
16.
Acta Neuropathol Commun ; 6(1): 147, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30593285

ABSTRACT

In-vivo labeling of retinal amyloid-beta(Aß) and tau has potential as non-invasive biomarker for Alzheimer's disease (AD). However, literature on the presence of Aß and phosphorylated tau (pTau) in AD retinas is inconclusive. We therefore assessed the presence of Aß and pTau in post-mortem retinas in 6 AD and 6 control cases who donated brains and eyes to the Netherlands Brain Bank. Neuropathological diagnosis of AD was made according to NIA-AA criteria. Formalin fixed retinas were dissected in quadrants and cross-sections of medial and superior retinas were made. Immuno-histochemical stainings were performed for Aß, amyloid precursor protein (APP) and pTau. To assess translation to an in-vivo set up using curcumin as labelling fluorophore, co-stainings with curcumin were performed. No typical Aß-plaques and neurofibrillary tangles, like in the cerebral cortex, were observed in AD retinas. A diffuse immunoreactive signal for pTau was increased in the inner and outer plexiform layers of the retina in AD cases compared to control cases with absence of cerebral amyloid pathology. Immunostaining with anti-Aß and anti-APP antibodies yielded signal in ganglion cells, amacrine cells, horizontal cells and Müller cells in both control and AD cases. We observed small extracellular deposits positive for anti-Aß antibodies 12F4 and 6E10 and negative for 4G8 and curcumin. A subset of these deposits could be characterized as corpora amylacea. In conclusion we found that retinal manifestations of AD pathology appear to be different compared to cerebral AD pathology. Using a qualitative cross-sectional approach, we did not find Aß/APP related differences in the retina between AD and control subjects. In contrast, tau related changes were found to be present in cases with cerebral AD pathology, suggesting retinal tau as a potential biomarker for AD.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Retina/metabolism , Retina/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Amyloid beta-Protein Precursor/metabolism , Autopsy , Female , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Middle Aged , Phosphorylation
17.
Alzheimers Dement (Amst) ; 6: 162-170, 2017.
Article in English | MEDLINE | ID: mdl-28275698

ABSTRACT

INTRODUCTION: Retinal characteristics are increasingly recognized as biomarkers for neurodegenerative diseases. Retinal thickness measured by optical coherence tomography may reflect the presence of Alzheimer's disease (AD). We performed a meta-analysis on retinal thickness in AD and mild cognitive impairment (MCI) patients and healthy controls (HCs). METHODS: We selected 25 studies with measurements of retinal thickness including 887 AD patients, 216 MCI patients, and 864 HCs that measured retinal thickness. Outcomes were peripapillary retinal nerve fiber layer (RNFL) and macular thickness. The main outcome was the standardized mean differences (SMDs). We used STATA to perform the meta-analysis (StataCorp, Texas; version 14.0). RESULTS: Relative to HCs, AD and MCI patients had lower peripapillary RNFL (SMD 0.98 [CI -1.30, -0.66, P < .0001] and SMD 0.71 [CI -1.24, -0.19, P = .008]). Total macular thickness was decreased in AD patients (SMD 0.88 [CI -1.12, -0.65, P = .000]). DISCUSSION: Retinal thickness is decreased in AD and MCI patients compared to HC. This confirms that neurodegenerative diseases may be reflected by retinal changes.

SELECTION OF CITATIONS
SEARCH DETAIL