Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Cell ; 176(6): 1461-1476.e23, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30849374

ABSTRACT

Maintaining the optimal performance of cell processes and organelles is the task of auto-regulatory systems. Here we describe an auto-regulatory device that helps to maintain homeostasis of the endoplasmic reticulum (ER) by adjusting the secretory flux to the cargo load. The cargo-recruiting subunit of the coatomer protein II (COPII) coat, Sec24, doubles as a sensor of folded cargo and, upon cargo binding, acts as a guanine nucleotide exchange factor to activate the signaling protein Gα12 at the ER exit sites (ERESs). This step, in turn, activates a complex signaling network that activates and coordinates the ER export machinery and attenuates proteins synthesis, thus preventing large fluctuations of folded and potentially active cargo that could be harmful to the cell or the organism. We call this mechanism AREX (autoregulation of ER export) and expect that its identification will aid our understanding of human physiology and diseases that develop from secretory dysfunction.


Subject(s)
Endoplasmic Reticulum/metabolism , Vesicular Transport Proteins/metabolism , Biological Transport , COP-Coated Vesicles/metabolism , COP-Coated Vesicles/physiology , Cell Line , Coatomer Protein/metabolism , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum Stress/physiology , Female , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/physiology , HeLa Cells , Humans , Male , Protein Folding , Protein Transport , Proteostasis/physiology , Signal Transduction
2.
Hum Genet ; 142(8): 1055-1076, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37199746

ABSTRACT

Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.


Subject(s)
Spinocerebellar Ataxias , Animals , Mice , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Ataxia , Fatty Acid Elongases/genetics , Amino Acid Sequence , Mutation
3.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830330

ABSTRACT

Marinesco-Sjogren syndrome (MSS) is a rare multisystem pediatric disorder, caused by loss-of-function mutations in the gene encoding the endoplasmic reticulum cochaperone SIL1. SIL1 acts as a nucleotide exchange factor for BiP, which plays a central role in secretory protein folding. SIL1 mutant cells have reduced BiP-assisted protein folding, cannot fulfil their protein needs, and experience chronic activation of the unfolded protein response (UPR). Maladaptive UPR may explain the cerebellar and skeletal muscle degeneration responsible for the ataxia and muscle weakness typical of MSS. However, the cause of other more variable, clinical manifestations, such as mild to severe mental retardation, hypogonadism, short stature, and skeletal deformities, is less clear. To gain insights into the pathogenic mechanisms and/or adaptive responses to SIL1 loss, we carried out cell biological and proteomic investigations in skin fibroblasts derived from a young patient carrying the SIL1 R111X mutation. Despite fibroblasts not being overtly affected in MSS, we found morphological and biochemical changes indicative of UPR activation and altered cell metabolism. All the cell machineries involved in RNA splicing and translation were strongly downregulated, while protein degradation via lysosome-based structures was boosted, consistent with an attempt of the cell to reduce the workload of the endoplasmic reticulum and dispose of misfolded proteins. Cell metabolism was extensively affected as we observed a reduction in lipid synthesis, an increase in beta oxidation, and an enhancement of the tricarboxylic acid cycle, with upregulation of eight of its enzymes. Finally, the catabolic pathways of various amino acids, including valine, leucine, isoleucine, tryptophan, lysine, aspartate, and phenylalanine, were enhanced, while the biosynthetic pathways of arginine, serine, glycine, and cysteine were reduced. These results indicate that, in addition to UPR activation and increased protein degradation, MSS fibroblasts have profound metabolic alterations, which may help them cope with the absence of SIL1.


Subject(s)
Fibroblasts/metabolism , Guanine Nucleotide Exchange Factors/genetics , Loss of Function Mutation , RNA Splicing , Spinocerebellar Degenerations/genetics , Unfolded Protein Response , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Amino Acids/metabolism , Child , Citric Acid Cycle/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Fibroblasts/pathology , Gene Expression , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Guanine Nucleotide Exchange Factors/deficiency , Humans , Lipid Metabolism/genetics , Molecular Sequence Annotation , Primary Cell Culture , Proteolysis , Spinocerebellar Degenerations/metabolism , Spinocerebellar Degenerations/pathology , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
4.
EMBO J ; 30(24): 4970-85, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21971085

ABSTRACT

Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P(2)) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P(2) in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P(2) and F-actin at the EEs is essential for exporting cargoes that transit this compartment.


Subject(s)
Actins/metabolism , Endocytosis , Endosomes/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphoric Monoester Hydrolases/metabolism , Biological Transport , Catalysis , Cell Line , Endosomes/enzymology , Humans , Intracellular Membranes/metabolism , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/metabolism , Phosphoric Monoester Hydrolases/genetics , Polymerization
5.
Nature ; 449(7158): 62-7, 2007 Sep 06.
Article in English | MEDLINE | ID: mdl-17687330

ABSTRACT

The molecular machinery responsible for the generation of transport carriers moving from the Golgi complex to the plasma membrane relies on a tight interplay between proteins and lipids. Among the lipid-binding proteins of this machinery, we previously identified the four-phosphate adaptor protein FAPP2, the pleckstrin homology domain of which binds phosphatidylinositol 4-phosphate and the small GTPase ARF1. FAPP2 also possesses a glycolipid-transfer-protein homology domain. Here we show that human FAPP2 is a glucosylceramide-transfer protein that has a pivotal role in the synthesis of complex glycosphingolipids, key structural and signalling components of the plasma membrane. The requirement for FAPP2 makes the whole glycosphingolipid synthetic pathway sensitive to regulation by phosphatidylinositol 4-phosphate and ARF1. Thus, by coupling the synthesis of glycosphingolipids with their export to the cell surface, FAPP2 emerges as crucial in determining the lipid identity and composition of the plasma membrane.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Glucosylceramides/metabolism , Glycosphingolipids/biosynthesis , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Biological Transport , Cell Line , Cell Membrane/chemistry , Cell Membrane/metabolism , Ceramides/metabolism , Humans , Models, Biological , Phosphatidylinositol Phosphates/metabolism , Sphingosine/metabolism , trans-Golgi Network/metabolism
6.
EMBO J ; 27(19): 2457-70, 2008 Oct 08.
Article in English | MEDLINE | ID: mdl-18784754

ABSTRACT

The phosphoinositides (PIs) function as efficient and finely tuned switches that control the assembly-disassembly cycles of complex molecular machineries with key roles in membrane trafficking. This important role of the PIs is mainly due to their versatile nature, which is in turn determined by their fast metabolic interconversions. PIs can be tightly regulated both spatially and temporally through the many PI kinases (PIKs) and phosphatases that are distributed throughout the different intracellular compartments. In spite of the enormous progress made in the past 20 years towards the definition of the molecular details of PI-protein interactions and of the regulatory mechanisms of the individual PIKs and phosphatases, important issues concerning the general principles of the organisation of the PI system and the coordination of the different PI-metabolising enzymes remain to be addressed. The answers should come from applying a systems biology approach to the study of the PI system, through the integration of analyses of the protein interaction data of the PI enzymes and the PI targets with those of the 'phenomes' of the genetic diseases that involve these PI-metabolising enzymes.


Subject(s)
Cell Membrane/metabolism , Phosphatidylinositols/metabolism , Signal Transduction/physiology , 1-Phosphatidylinositol 4-Kinase/genetics , 1-Phosphatidylinositol 4-Kinase/metabolism , Animals , Cell Membrane/chemistry , Humans , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Transport/physiology
7.
Nat Cell Biol ; 6(5): 393-404, 2004 May.
Article in English | MEDLINE | ID: mdl-15107860

ABSTRACT

The molecular mechanisms underlying the formation of carriers trafficking from the Golgi complex to the cell surface are still ill-defined; nevertheless, the involvement of a lipid-based machinery is well established. This includes phosphatidylinositol 4-phosphate (PtdIns(4)P), the precursor for phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). In yeast, PtdIns(4)P exerts a direct role, however, its mechanism of action and its targets in mammalian cells remain uncharacterized. We have identified two effectors of PtdIns(4)P, the four-phosphate-adaptor protein 1 and 2 (FAPP1 and FAPP2). Both proteins localize to the trans-Golgi network (TGN) on nascent carriers, and interact with PtdIns(4)P and the small GTPase ADP-ribosylation factor (ARF) through their plekstrin homology (PH) domain. Displacement or knockdown of FAPPs inhibits cargo transfer to the plasma membrane. Moreover, overexpression of FAPP-PH impairs carrier fission. Therefore, FAPPs are essential components of a PtdIns(4)P- and ARF-regulated machinery that controls generation of constitutive post-Golgi carriers.


Subject(s)
ADP-Ribosylation Factors/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism , Fungal Proteins/metabolism , Golgi Apparatus/metabolism , Phosphatidylinositol Phosphates/metabolism , trans-Golgi Network/metabolism , Adaptor Proteins, Signal Transducing , Animals , Biological Transport/physiology , COS Cells , Carrier Proteins/chemistry , Carrier Proteins/genetics , Fungal Proteins/genetics , Golgi Apparatus/ultrastructure , Humans , Molecular Sequence Data , Protein Structure, Tertiary , RNA, Small Interfering/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Subcellular Fractions/chemistry , Subcellular Fractions/metabolism
8.
Mol Biol Cell ; 18(5): 1595-608, 2007 May.
Article in English | MEDLINE | ID: mdl-17314401

ABSTRACT

The Golgi complex in mammalian cells forms a continuous ribbon of interconnected stacks of flat cisternae. We show here that this distinctive architecture reflects and requires the continuous input of membranes from the endoplasmic reticulum (ER), in the form of pleiomorphic ER-to-Golgi carriers (EGCs). An important step in the biogenesis of the Golgi ribbon is the complete incorporation of the EGCs into the stacks. This requires the Golgi-matrix protein GM130, which continuously cycles between the cis-Golgi compartments and the EGCs. On acquiring GM130, the EGCs undergo homotypic tethering and fusion, maturing into larger and more homogeneous membrane units that appear primed for incorporation into the Golgi stacks. In the absence of GM130, this process is impaired and the EGCs remain as distinct entities. This induces the accumulation of tubulovesicular membranes, the shortening of the cisternae, and the breakdown of the Golgi ribbon. Under these conditions, however, secretory cargo can still be delivered to the Golgi complex, although this occurs less efficiently, and apparently through transient and/or limited continuities between the EGCs and the Golgi cisternae.


Subject(s)
Autoantigens/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Membrane Proteins/metabolism , Animals , Autoantigens/genetics , Base Sequence , Biological Transport, Active , COS Cells , Cell Line , Chlorocebus aethiops , DNA/genetics , Glycosylation , HeLa Cells , Humans , Intracellular Membranes/metabolism , Intracellular Membranes/ultrastructure , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Models, Biological , RNA Interference , RNA, Small Interfering/genetics , Rats
9.
J Control Release ; 294: 176-184, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30553852

ABSTRACT

Galectin-3-binding protein (Gal-3BP) has been identified as a cancer and metastasis-associated, secreted protein that is expressed by the large majority of cancers. The present study describes a special type of non-internalizing antibody-drug-conjugates that specifically target Gal-3BP. Here, we show that the humanized 1959 antibody, which specifically recognizes secreted Gal-3BP, selectively localized around tumor but not normal cells. A site specific disulfide linkage with thiol-maytansinoids to unpaired cysteine residues of 1959, resulting in a drug-antibody ratio of 2, yielded an ADC product, which cured A375m melanoma bearing mice. ADC products based on the non-internalizing 1959 antibody may be useful for the treatment of several human malignancies, as the cognate antigen is abundantly expressed and secreted by several cancers, while being present at low levels in most normal adult tissues.


Subject(s)
Antigens, Neoplasm/immunology , Biomarkers, Tumor/immunology , Immunoconjugates/therapeutic use , Neoplasms/therapy , Animals , Cell Line, Tumor , Female , Humans , Immunoconjugates/pharmacokinetics , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Rabbits
10.
Biochim Biophys Acta ; 1771(6): 761-8, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17500031

ABSTRACT

The Golgi complex (GC) represents the central junction for membrane trafficking. Protein and lipid cargoes continuously move through the GC in both anterograde and retrograde directions, departing to and arriving from diverse destinations within the cell. Nevertheless, the GC is able to maintain its identity and strict compartmentalisation, having a different composition in terms of protein and lipid content compared to other organelles. The discovery of coat protein complexes and the elucidation of their role in sorting cargo proteins into specific transport carriers have provided a partial answer to this phenomenon. However, it is more difficult to understand how relatively small and diffusible molecules like lipids can be concentrated in or excluded from specific subcellular compartments. The discovery of lipid-transfer proteins operating in the secretory pathway and specifically at the GC has shed light on one possible way in which this lipid compartmentalisation can be accomplished. The correct lipid distribution along the secretory pathway is of crucial importance for cargo protein sorting and secretion. This review focuses on what is now known about the putative and effective lipid-transfer proteins at the GC, and on how they affect the function and structure of the GC itself.


Subject(s)
Carrier Proteins/metabolism , Lipid Metabolism , Membrane Lipids/chemistry , trans-Golgi Network/metabolism , Animals , Biological Transport , COP-Coated Vesicles/metabolism , Cell Compartmentation/physiology , Endoplasmic Reticulum/metabolism , Golgi Apparatus/physiology , Humans , Membrane Lipids/physiology , Models, Biological , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Receptors, Steroid/metabolism , Vesicular Transport Proteins/metabolism
11.
Oncotarget ; 9(12): 10228-10246, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29535802

ABSTRACT

Membrane trafficking via the Golgi-localised KDEL receptor activates signalling cascades that coordinate both trafficking and other cellular functions, including autophagy and extracellular matrix degradation. In this study, we provide evidence that membrane trafficking activates KDEL receptor and the Src family kinases at focal adhesions of HeLa cells, where this phosphorylates ADP-ribosylation factor GTPase-activating protein with SH3 domain, ankyrin repeat and PH domain (ASAP)1 and focal adhesion kinase (FAK). Previous studies have reported extracellular matrix degradation at focal adhesions. Here, matrix degradation was not seen at focal adhesions, although it occurred at invadopodia, where it was increased by KDEL receptor activation. This activation of KDEL receptor at invadopodia of A375 cells promoted recruitment and phosphorylation of FAK on tyrosines 397 and 861. From the functional standpoint, FAK overexpression inhibited steady-state and KDEL-receptor-stimulated extracellular matrix degradation, whereas overexpression of the FAK-Y397F mutant only inhibited KDEL-receptor-stimulated matrix degradation. Finally, we show that the Src and FAK activated downstream of KDEL receptor are part of parallel signalling pathways. In conclusion, membrane-traffic-generated signalling via KDEL receptor activates Src not only at the Golgi complex, but also at focal adhesions. By acting on Src and FAK, KDEL receptor increases invadopodia-mediated matrix degradation.

12.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3164-3180, 2018 10.
Article in English | MEDLINE | ID: mdl-30293566

ABSTRACT

Loss-of-function mutations in the SIL1 gene are linked to Marinesco-Sjögren syndrome (MSS), a rare multisystem disease of infancy characterized by cerebellar and skeletal muscle degeneration. SIL1 is a ubiquitous adenine nucleotide exchange factor for the endoplasmic reticulum (ER) chaperone BiP. The complexity of mechanisms by which loss of SIL1 causes MSS is not yet fully understood. We used HeLa cells to test the hypothesis that impaired protein folding in the ER due to loss of SIL1 could affect secretory trafficking, impairing the transport of cargoes essential for the function of MSS vulnerable cells. Immunofluorescence and ultrastructural analysis of SIL1-knocked-down cells detected ER chaperone aggregation, enlargement of the Golgi complex, increased autophagic vacuoles, and mitochondrial swelling. SIL1-interefered cells also had delayed ER-to-plasma membrane transport with retention of Na+/K+-ATPase and procollagen-I in the ER and Golgi, and increased apoptosis. The PERK pathway of the unfolded protein response was activated in SIL1-interfered cells, and the PERK inhibitor GSK2606414 attenuated the morphological and functional alterations of the secretory pathway, and significantly reduced cell death. These results indicate that loss of SIL1 is associated with alterations of secretory transport, and suggest that inhibiting PERK signalling may alleviate the cellular pathology of SIL1-related MSS.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Spinocerebellar Degenerations/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Apoptosis , Autophagy , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Gene Knockdown Techniques , HeLa Cells , Humans , Indoles/pharmacology , Mitochondria/metabolism , Signal Transduction , Spinocerebellar Degenerations/metabolism , Unfolded Protein Response , Vacuoles/metabolism
13.
Biochim Biophys Acta ; 1744(3): 396-405, 2005 Jul 10.
Article in English | MEDLINE | ID: mdl-15979509

ABSTRACT

The phosphorylated derivatives of phosphatidylinositol (PtdIns), known as the polyphosphoinositides (PIs), represent key membrane-localized signals in the regulation of fundamental cell processes, such as membrane traffic and cytoskeleton remodelling. The reversible production of the PIs is catalyzed through the combined activities of a number of specific phosphoinositide phosphatases and kinases that can either act separately or in concert on all the possible combinations of the 3, 4, and 5 positions of the inositol ring. So far, seven distinct PI species have been identified in mammalian cells and named according to their site(s) of phosphorylation: PtdIns 3-phosphate (PI3P); PtdIns 4-phosphate (PI4P); PtdIns 5-phosphate (PI5P); PtdIns 3,4-bisphosphate (PI3,4P2); PtdIns 4,5-bisphosphate (PI4,5P2); PtdIns 3,5-bisphosphate (PI3,5P2); and PtdIns 3,4,5-trisphosphate (PI3,4,5P3). Over the last decade, accumulating evidence has indicated that the different PIs serve not only as intermediates in the synthesis of the higher phosphorylated phosphoinositides, but also as regulators of different protein targets in their own right. These regulatory actions are mediated through the direct binding of their protein targets. In this way, the PIs can control the subcellular localization and activation of their various effectors, and thus execute a variety of cellular responses. To exert these functions, the metabolism of the PIs has to be finely regulated both in time and space, and this is achieved by controlling the subcellular distribution, regulation, and activation states of the enzymes involved in their synthesis and removal (kinases and phosphatases). These exist in many different isoforms, each of which appears to have a distinctive intracellular localization and regulation. As a consequence of this subcompartimentalized PI metabolism, a sort of "PI-fingerprint" of each cell membrane compartment is generated. When combined with the targeted recruitment of their protein effectors and the different intracellular distributions of other lipids and regulatory proteins (such as small GTPases), these factors can maintain and determine the identity of the cell organelles despite the extensive membrane flux []. Here, we provide an overview of the regulation and roles of different phosphoinositide kinases and phosphatases and their lipid products at the Golgi complex.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Golgi Apparatus/enzymology , Phosphatidylinositols/metabolism , Phosphoric Monoester Hydrolases/metabolism , Animals
14.
Oncotarget ; 7(32): 52017-52031, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27409831

ABSTRACT

Oncogenic K-ras is capable to control tumor growth and progression by rewiring cancer metabolism. In vitro NIH-Ras cells convert glucose to lactate and use glutamine to sustain anabolic processes, but their in vivo environmental adaptation and multiple metabolic pathways activation ability is poorly understood. Here, we show that NIH-Ras cancer cells and tumors are able to coordinate nutrient utilization to support aggressive cell proliferation and survival. Using PET imaging and metabolomics-mass spectrometry, we identified the activation of multiple metabolic pathways such as: glycolysis, autophagy recycling mechanism, glutamine and serine/glycine metabolism, both under physiological and under stress conditions. Finally, differential responses between in vitro and in vivo systems emphasize the advantageous and uncontrolled nature of the in vivo environment, which has a pivotal role in controlling the responses to therapy.


Subject(s)
Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism , Animals , Genes, ras/genetics , Glycolysis , Mass Spectrometry , Metabolomics/methods , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms, Experimental/genetics , Positron-Emission Tomography/methods
15.
Nat Cell Biol ; 18(8): 839-850, 2016 08.
Article in English | MEDLINE | ID: mdl-27398910

ABSTRACT

Phosphoinositides (PtdIns) control fundamental cell processes, and inherited defects of PtdIns kinases or phosphatases cause severe human diseases, including Lowe syndrome due to mutations in OCRL, which encodes a PtdIns(4,5)P2 5-phosphatase. Here we unveil a lysosomal response to the arrival of autophagosomal cargo in which OCRL plays a key part. We identify mitochondrial DNA and TLR9 as the cargo and the receptor that triggers and mediates, respectively, this response. This lysosome-cargo response is required to sustain the autophagic flux and involves a local increase in PtdIns(4,5)P2 that is confined in space and time by OCRL. Depleting or inhibiting OCRL leads to an accumulation of lysosomal PtdIns(4,5)P2, an inhibitor of the calcium channel mucolipin-1 that controls autophagosome-lysosome fusion. Hence, autophagosomes accumulate in OCRL-depleted cells and in the kidneys of Lowe syndrome patients. Importantly, boosting the activity of mucolipin-1 with selective agonists restores the autophagic flux in cells from Lowe syndrome patients.


Subject(s)
Autophagosomes/physiology , Autophagy/physiology , Lysosomes/metabolism , Phosphatidylinositols/genetics , Phosphoric Monoester Hydrolases/genetics , Toll-Like Receptor 9/genetics , Animals , Autophagy/genetics , Cell Line , Humans , Mutation/genetics , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphoric Monoester Hydrolases/metabolism , Zebrafish
16.
Dev Cell ; 30(3): 280-94, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25117681

ABSTRACT

A fundamental property of cellular processes is to maintain homeostasis despite varying internal and external conditions. Within the membrane transport apparatus, variations in membrane fluxes from the endoplasmic reticulum (ER) to the Golgi complex are balanced by opposite fluxes from the Golgi to the ER to maintain homeostasis between the two organelles. Here we describe a molecular device that balances transport fluxes by integrating transduction cascades with the transport machinery. Specifically, ER-to-Golgi transport activates the KDEL receptor at the Golgi, which triggers a cascade that involves Gs and adenylyl cyclase and phosphodiesterase isoforms and then PKA activation and results in the phosphorylation of transport machinery proteins. This induces retrograde traffic to the ER and balances transport fluxes between the ER and Golgi. Moreover, the KDEL receptor activates CREB1 and other transcription factors that upregulate transport-related genes. Thus, a Golgi-based control system maintains transport homeostasis through both signaling and transcriptional networks.


Subject(s)
Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Receptors, Peptide/metabolism , Animals , Biological Transport/physiology , Cell Line , Homeostasis/physiology , Humans , Mice , Phosphorylation , Signal Transduction/physiology
17.
J Cell Sci ; 121(Pt 12): 1955-63, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18525025

ABSTRACT

The phosphoinositides (PIs) are membrane phospholipids that actively operate at membrane-cytosol interfaces through the recruitment of a number of effector proteins. In this context, each of the seven different PI species represents a topological determinant that can establish the nature and the function of the membrane where it is located. Phosphatidylinositol 4-phosphate (PtdIns(4)P) is the most abundant of the monophosphorylated inositol phospholipids in mammalian cells, and it is produced by D-4 phosphorylation of the inositol ring of PtdIns. PtdIns(4)P can be further phosphorylated to PtdIns(4,5)P(2) by PtdIns(4)P 5-kinases and, indeed, PtdIns(4)P has for many years been considered to be just the precursor of PtdIns(4,5)P(2). Over the last decade, however, a large body of evidence has accumulated that shows that PtdIns(4)P is, in its own right, a direct regulator of important cell functions. The subcellular localisation of the PtdIns(4)P effectors initially led to the assumption that the bulk of this lipid is present in the membranes of the Golgi complex. However, the existence and physiological relevance of ;non-Golgi pools' of PtdIns(4)P have now begun to be addressed. The aim of this Commentary is to describe our present knowledge of PtdIns(4)P metabolism and the molecular machineries that are directly regulated by PtdIns(4)P within and outside of the Golgi complex.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Golgi Apparatus/metabolism , Phosphatidylinositol 4,5-Diphosphate/physiology , Phosphatidylinositol Phosphates/physiology , Signal Transduction , 1-Phosphatidylinositol 4-Kinase/genetics , Actin Depolymerizing Factors/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Humans , Lipid Metabolism , Phosphatidylinositols/metabolism , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Transport , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL