Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Struct Biol ; 199(1): 1-11, 2017 07.
Article in English | MEDLINE | ID: mdl-28552722

ABSTRACT

Immuno-electron microscopy is commonly performed with the use of antibodies. In the last decade the antibody fragment indicated as nanobody (VHH or single domain antibody) has found its way to different applications previously done with conventional antibodies. Nanobodies can be selected to bind with high affinity and specificity to different antigens. They are small (molecular weight ca. 15kDa) and are usually easy to produce in microorganisms. Here we have evaluated the feasibility of a nanobody binding to HER2 for application in immuno-electron microscopy. To obtain highest labeling efficiency combined with optimal specificity, different labeling conditions were analysed, which included nanobody concentration, fixation and blocking conditions. The obtained optimal protocol was applied for post-embedment labeling of Tokuyasu cryosections and for pre-embedment labeling of HER2 for fluorescence microscopy and both transmission and scanning electron microscopy. We show that formaldehyde fixation after incubation with the anti-HER2 nanobody, improves labeling intensity. Among all tested blocking agents the best results were obtained with a mixture of cold water fish gelatine and acetylated bovine serum albumin, which prevented a-specific interactions causing background labeling while preserving specific interactions at the same time. In conclusion, we have developed a nanobody-based protocol for immuno-gold labeling of HER2 for Tokuyasu cryosections in TEM as well as for pre-embedment gold labeling of cells for both TEM and SEM.


Subject(s)
Breast Neoplasms/diagnostic imaging , Microscopy, Immunoelectron/methods , Receptor, ErbB-2/analysis , Single-Domain Antibodies/immunology , Tissue Fixation/methods , Animals , Gold , Humans , Microscopy, Immunoelectron/standards , Receptor, ErbB-2/immunology , Research Design , Staining and Labeling/standards , Tissue Fixation/standards
2.
Int J Cancer ; 134(11): 2663-73, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24222574

ABSTRACT

Intraoperative near-infrared (NIR) fluorescence imaging is a technology with high potential to provide the surgeon with real-time visualization of tumors during surgery. Our study explores the feasibility for clinical translation of an epidermal growth factor receptor (EGFR)-targeting nanobody for intraoperative imaging and resection of orthotopic tongue tumors and cervical lymph node metastases. The anti-EGFR nanobody 7D12 and the negative control nanobody R2 were conjugated to the NIR fluorophore IRDye800CW (7D12-800CW and R2-800CW). Orthotopic tongue tumors were induced in nude mice using the OSC-19-luc2-cGFP cell line. Tumor-bearing mice were injected with 25 µg 7D12-800CW, R2-800CW or 11 µg 800CW. Subsequently, other mice were injected with 50 or 75 µg of 7D12-800CW. The FLARE imaging system and the IVIS spectrum were used to identify, delineate and resect the primary tumor and cervical lymph node metastases. All tumors could be clearly identified using 7D12-800CW. A significantly higher tumor-to-background ratio (TBR) was observed in mice injected with 7D12-800CW compared to mice injected with R2-800CW and 800CW. The highest average TBR (2.00 ± 0.34 and 2.72 ± 0.17 for FLARE and IVIS spectrum, respectively) was observed 24 hr after administration of the EGFR-specific nanobody. After injection of 75 µg 7D12-800CW cervical lymph node metastases could be clearly detected. Orthotopic tongue tumors and cervical lymph node metastases in a mouse model were clearly identified intraoperatively using a recently developed fluorescent EGFR-targeting nanobody. Translation of this approach to the clinic would potentially improve the rate of radical surgical resections.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , ErbB Receptors/antagonists & inhibitors , Fluorescent Dyes , Head and Neck Neoplasms/pathology , Lymph Nodes/pathology , Nanoparticles/chemistry , Tongue Neoplasms/pathology , Animals , Antibodies, Monoclonal, Humanized/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , ErbB Receptors/immunology , ErbB Receptors/metabolism , Female , Head and Neck Neoplasms/surgery , Humans , Image Processing, Computer-Assisted , Intraoperative Care , Lymph Nodes/surgery , Lymphatic Metastasis , Mice , Mice, Inbred BALB C , Mice, Nude , Microscopy, Fluorescence , Tongue Neoplasms/surgery , Tumor Cells, Cultured
3.
Nanoscale ; 8(12): 6490-4, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26954515

ABSTRACT

Photodynamic therapy for therapy-resistant cancers will greatly benefit from targeted delivery of tumor photosensitizing agents. In this study, a strategy for the site-specific conjugation of single domain antibodies onto liposomes containing the photosensitizer zinc phthalocyanine was developed and tested.


Subject(s)
Liposomes/chemistry , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Single-Domain Antibodies/chemistry , Animals , Cell Line, Tumor , Drug Carriers , Humans , Indoles/chemistry , Isoindoles , Kinetics , Mice , Nanomedicine/methods , Organometallic Compounds/chemistry , Oxygen/chemistry , Zinc/chemistry , Zinc Compounds
4.
J Control Release ; 224: 77-85, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-26773767

ABSTRACT

Extracellular vesicles (EVs) are increasingly being recognized as candidate drug delivery systems due to their ability to functionally transfer biological cargo between cells. However, the therapeutic applicability of EVs may be limited due to a lack of cell-targeting specificity and rapid clearance of exogenous EVs from the circulation. In order to improve EV characteristics for drug delivery to tumor cells, we have developed a novel method for decorating EVs with targeting ligands conjugated to polyethylene glycol (PEG). Nanobodies specific for the epidermal growth factor receptor (EGFR) were conjugated to phospholipid (DMPE)-PEG derivatives to prepare nanobody-PEG-micelles. When micelles were mixed with EVs derived from Neuro2A cells or platelets, a temperature-dependent transfer of nanobody-PEG-lipids to the EV membranes was observed, indicative of a 'post-insertion' mechanism. This process did not affect EV morphology, size distribution, or protein composition. After introduction of PEG-conjugated control nanobodies to EVs, cellular binding was compromised due to the shielding properties of PEG. However, specific binding to EGFR-overexpressing tumor cells was dramatically increased when EGFR-specific nanobodies were employed. Moreover, whereas unmodified EVs were rapidly cleared from the circulation within 10min after intravenous injection in mice, EVs modified with nanobody-PEG-lipids were still detectable in plasma for longer than 60min post-injection. In conclusion, we propose post-insertion as a novel technique to confer targeting capacity to isolated EVs, circumventing the requirement to modify EV-secreting cells. Importantly, insertion of ligand-conjugated PEG-derivatized phospholipids in EV membranes equips EVs with improved cell specificity and prolonged circulation times, potentially increasing EV accumulation in targeted tissues and improving cargo delivery.


Subject(s)
Drug Delivery Systems , Extracellular Vesicles/chemistry , Polyethylene Glycols/chemistry , Administration, Intravenous , Blood Platelets/metabolism , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , ErbB Receptors/administration & dosage , Excipients , Humans , Ligands , Micelles , Nanoparticles , Particle Size , Phospholipids/chemistry
5.
Curr Cancer Drug Targets ; 9(6): 748-60, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19754359

ABSTRACT

Both the epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) can contribute to tumor development and -progression through their effects on cell proliferation, inhibition of apoptosis, angiogenesis, anchorage-independent growth and tumor-associated inflammation. EGFR-targeting monoclonal antibodies and small molecule tyrosine kinase inhibitors are currently in clinical use for the treatment of several types of cancer. However, primary and acquired resistance to these agents often occurs and thereby limits the clinical efficacy of mono-specific targeted therapy. Results from both in vitro and in vivo studies indicate that cross-talk between EGFR and IGF-1R can lead to acquired resistance against EGFR-targeted drugs. This review describes the interface between the EGFR and IGF-1R signaling networks and the implications of the extensive cross-talk between these two receptor systems for cancer therapy. EGFR and IGF-1R interact on multiple levels, either through a direct association between the two receptors, by mediating the availability of each others ligands, or indirectly, via common interaction partners such as G protein coupled receptors (GPCR) or downstream signaling molecules. This multi-layered cross-talk and its involvement in the induction of resistance to targeted therapies provide a clear rationale for dual targeting of EGFR and IGF-1R. We discuss several (potential) strategies to simultaneously inhibit EGFR and IGF-1R signaling as promising novel therapeutic approaches.


Subject(s)
ErbB Receptors/metabolism , Receptor Cross-Talk/physiology , Receptor, IGF Type 1/metabolism , Signal Transduction/physiology , Antineoplastic Agents/pharmacology , Drug Delivery Systems , Drug Discovery , Enzyme Activation , ErbB Receptors/antagonists & inhibitors , Humans , Models, Biological , Receptor Cross-Talk/drug effects , Receptor, IGF Type 1/antagonists & inhibitors , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL