Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(6): 1206-1221, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38772379

ABSTRACT

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Subject(s)
Neurodevelopmental Disorders , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Epilepsy/genetics , Exome Sequencing , Genetic Diseases, X-Linked/genetics , Heterozygote , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Pedigree , Phenotype , Shal Potassium Channels/genetics
2.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37451268

ABSTRACT

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Subject(s)
Intellectual Disability , Phosphatidylinositols , Animals , Syndrome , Actins , Zebrafish/genetics , Intellectual Disability/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphatidylinositol Phosphates
3.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33909990

ABSTRACT

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Subject(s)
Abnormalities, Multiple/pathology , Adenosine Triphosphatases/genetics , Craniofacial Abnormalities/pathology , DNA Methylation , Epigenesis, Genetic , Growth Disorders/pathology , Heart Septal Defects, Ventricular/pathology , Mutation , Neurodevelopmental Disorders/pathology , Phenotype , Abnormalities, Multiple/genetics , Case-Control Studies , Cohort Studies , Craniofacial Abnormalities/genetics , Female , Genetic Predisposition to Disease , Growth Disorders/genetics , Heart Septal Defects, Ventricular/genetics , Humans , Infant, Newborn , Male , Neurodevelopmental Disorders/genetics
4.
Genet Med ; : 101231, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39132680

ABSTRACT

PURPOSE: Pediatric cholestasis is the phenotypic expression of clinically and genetically heterogeneous disorders of bile acid synthesis and flow. Although a growing number of monogenic causes of pediatric cholestasis have been identified, the majority of cases remain undiagnosed molecularly. METHODS: In a cohort of 299 pediatric participants (279 families) with intrahepatic cholestasis, we performed exome sequencing as a first-tier diagnostic test. RESULTS: A likely causal variant was identified in 135 families (48.56%). These comprise 135 families that harbor variants spanning 37 genes with established or tentative links to cholestasis. In addition, we propose a novel candidate gene (PSKH1) (HGNC:9529) in 4 families. PSKH1 was particularly compelling because of strong linkage in three consanguineous families who shared a novel hepatorenal ciliopathy phenotype. Two of the four families shared a founder homozygous variant while the third had a different homozygous variant in PSKH1. PSKH1 encodes a putative protein serine kinase of unknown function. Patient fibroblasts displayed abnormal cilia that are long and show abnormal transport. A homozygous Pskh1 mutant mouse faithfully recapitulated the human phenotype and displayed abnormally long cilia. The phenotype could be rationalized by the loss of catalytic activity observed for each recombinant PSKH1 variant using in vitro kinase assays. CONCLUSION: Our results support the use of genomics in the workup of pediatric cholestasis and reveal PSKH1-related hepatorenal ciliopathy as a novel candidate monogenic form.

5.
Am J Hum Genet ; 105(2): 403-412, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31303265

ABSTRACT

POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder.


Subject(s)
Gene Expression Regulation , Mutation , Neurodevelopmental Disorders/etiology , POU Domain Factors/genetics , Transcriptional Activation , Amino Acid Sequence , Child , Female , Genetic Association Studies , Genotype , Humans , Male , Neurodevelopmental Disorders/pathology , POU Domain Factors/chemistry , Protein Conformation , Sequence Homology
6.
Am J Hum Genet ; 105(2): 283-301, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31353023

ABSTRACT

The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Muscle Hypotonia/pathology , Mutation , Neurodevelopmental Disorders/pathology , Saccharomyces cerevisiae/growth & development , Adolescent , Age of Onset , Child , Child, Preschool , Female , HeLa Cells , Heterozygote , Humans , Male , Muscle Hypotonia/enzymology , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/enzymology , Neurodevelopmental Disorders/genetics , Phenotype , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
7.
Am J Hum Genet ; 104(1): 164-178, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30580808

ABSTRACT

SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.


Subject(s)
Developmental Disabilities/complications , Developmental Disabilities/genetics , Intellectual Disability/complications , Intellectual Disability/genetics , Mutation , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Adolescent , Child , Child, Preschool , DNA-Binding Proteins , Face/abnormalities , Female , Hand Deformities, Congenital/genetics , Humans , Male , Micrognathism/genetics , Neck/abnormalities , Reelin Protein , Syndrome
8.
Mol Psychiatry ; 26(6): 2013-2024, 2021 06.
Article in English | MEDLINE | ID: mdl-32346159

ABSTRACT

Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Animals , Child , Drosophila , Drosophila melanogaster , Haploinsufficiency/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics
9.
Genet Med ; 23(4): 653-660, 2021 04.
Article in English | MEDLINE | ID: mdl-33299146

ABSTRACT

PURPOSE: This study aims to provide a comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. METHODS: Individuals harboring heterozygous missense or loss-of-function variants in SNAP25 were assembled through collaboration with international colleagues, matchmaking platforms, and literature review. For each individual, detailed phenotyping, classification, and structural modeling of the identified variant were performed. RESULTS: The cohort comprises 23 individuals with pathogenic or likely pathogenic de novo variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cerebral visual impairment, and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. CONCLUSION: We provide a comprehensive description of SNAP25-DEE with intellectual disability and early-onset epilepsy mostly occurring before the age of two years. These core symptoms and additional recurrent phenotypes show an overlap to genes encoding other components or associated proteins of the SNARE complex such as STX1B, STXBP1, or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed "SNAREopathies."


Subject(s)
Brain Diseases , Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Synaptosomal-Associated Protein 25/genetics , Child, Preschool , Epilepsy/genetics , Humans , Neurodevelopmental Disorders/genetics , Phenotype
10.
Am J Hum Genet ; 101(2): 300-310, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28777935

ABSTRACT

Massively parallel sequencing has revealed many de novo mutations in the etiology of developmental and epileptic encephalopathies (EEs), highlighting their genetic heterogeneity. Additional candidate genes have been prioritized in silico by their co-expression in the brain. Here, we evaluate rare coding variability in 20 candidates nominated with the use of a reference gene set of 51 established EE-associated genes. Variants within the 20 candidate genes were extracted from exome-sequencing data of 42 subjects with EE and no previous genetic diagnosis. We identified 7 rare non-synonymous variants in 7 of 20 genes and performed Sanger sequence validation in affected probands and parental samples. De novo variants were found only in SLC1A2 (aka EAAT2 or GLT1) (c.244G>A [p.Gly82Arg]) and YWHAG (aka 14-3-3γ) (c.394C>T [p.Arg132Cys]), highlighting the potential cause of EE in 5% (2/42) of subjects. Seven additional subjects with de novo variants in SLC1A2 (n = 1) and YWHAG (n = 6) were subsequently identified through online tools. We identified a highly significant enrichment of de novo variants in YWHAG, establishing their role in early-onset epilepsy, and we provide additional support for the prior assignment of SLC1A2. Hence, in silico modeling of brain co-expression is an efficient method for nominating EE-associated genes to further elucidate the disorder's etiology and genotype-phenotype correlations.


Subject(s)
14-3-3 Proteins/genetics , Genetic Predisposition to Disease , Glutamate Plasma Membrane Transport Proteins/genetics , Spasms, Infantile/genetics , Adolescent , Adult , Amino Acid Sequence , Child , Excitatory Amino Acid Transporter 2 , Exome/genetics , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Phenotype , Young Adult
11.
Am J Hum Genet ; 101(1): 139-148, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28686853

ABSTRACT

We report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait. These subjects share a set of common facial features that include a prominent maxilla and upper lip that readily reveal the upper gingiva, widely spaced teeth, and a broad nasal tip. Together, these features comprise a recognizable facial phenotype. We compared these features with those of chromosome 1q41q42 microdeletion syndrome, which typically contains WDR26, and noted that clinical features are consistent between the two subsets, suggesting that haploinsufficiency of WDR26 contributes to the pathology of 1q41q42 microdeletion syndrome. Consistent with this, WDR26 loss-of-function single-nucleotide mutations identified in these subjects lead to nonsense-mediated decay with subsequent reduction of RNA expression and protein levels. We derived a structural model of WDR26 and note that missense variants identified in these individuals localize to highly conserved residues of this WD-40-repeat-containing protein. Given that WDR26 mutations have been identified in ∼1 in 2,000 of subjects in our clinical cohorts and that WDR26 might be poorly annotated in exome variant-interpretation pipelines, we would anticipate that this disorder could be more common than currently appreciated.


Subject(s)
Facies , Gait/genetics , Haploinsufficiency/genetics , Intellectual Disability/genetics , Proteins/genetics , Seizures/genetics , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Base Sequence , Child, Preschool , Chromosome Deletion , Female , Growth and Development/genetics , Humans , Intellectual Disability/complications , Male , Mutation/genetics , Proteins/chemistry , RNA Stability/genetics , Seizures/complications , Syndrome
12.
Am J Hum Genet ; 100(1): 151-159, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27989324

ABSTRACT

MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized hypotonia, psychomotor delay, refractory epilepsy, and elevated lactate in the blood and cerebrospinal fluid. Functional studies in fibroblasts from affected subjects showed both an apparently complete loss of MDH2 levels and MDH2 enzymatic activity close to null. Metabolomics analyses demonstrated a significant concomitant accumulation of the MDH substrate, malate, and fumarate, its immediate precursor in the Krebs cycle, in affected subjects' fibroblasts. Lentiviral complementation with wild-type MDH2 cDNA restored MDH2 levels and mitochondrial MDH activity. Additionally, introduction of the three missense mutations from the affected subjects into Saccharomyces cerevisiae provided functional evidence to support their pathogenicity. Disruption of the Krebs cycle is a hallmark of cancer, and MDH2 has been recently identified as a novel pheochromocytoma and paraganglioma susceptibility gene. We show that loss-of-function mutations in MDH2 are also associated with severe neurological clinical presentations in children.


Subject(s)
Brain Diseases/genetics , Citric Acid Cycle , Malate Dehydrogenase/genetics , Mutation , Age of Onset , Alleles , Amino Acid Sequence , Child , Child, Preschool , Citric Acid Cycle/genetics , Fibroblasts/enzymology , Fibroblasts/metabolism , Fumarates/metabolism , Genetic Complementation Test , Humans , Infant , Infant, Newborn , Malate Dehydrogenase/chemistry , Malate Dehydrogenase/metabolism , Malates/metabolism , Male , Metabolomics , Models, Molecular
13.
Am J Hum Genet ; 101(5): 768-788, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100089

ABSTRACT

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Intellectual Disability/genetics , Mutation/genetics , Animals , Brain/pathology , Cell Line , Exome/genetics , Female , Glutamic Acid/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/pathology , Phosphorylation/genetics , Signal Transduction/genetics
14.
J Hum Genet ; 65(9): 727-734, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32341456

ABSTRACT

The ubiquitin-proteasome system is the principal system for protein degradation mediated by ubiquitination and is involved in various cellular processes. Cullin-RING ligases (CRL) are one class of E3 ubiquitin ligases that mediate polyubiquitination of specific target proteins, leading to decomposition of the substrate. Cullin 3 (CUL3) is a member of the Cullin family proteins, which act as scaffolds of CRL. Here we describe three cases of global developmental delays, with or without epilepsy, who had de novo CUL3 variants. One missense variant c.854T>C, p.(Val285Ala) and two frameshift variants c.137delG, p.(Arg46Leufs*32) and c.1239del, p.(Asp413Glufs*42) were identified by whole-exome sequencing. The Val285 residue located in the Cullin N-terminal domain and p.Val285Ala CUL3 mutant showed significantly weaker interactions to the BTB domain proteins than wild-type CUL3. Our findings suggest that de novo CUL3 variants may cause structural instability of the CRL complex and impairment of the ubiquitin-proteasome system, leading to diverse neuropsychiatric disorders.


Subject(s)
Cullin Proteins/genetics , Cullin Proteins/metabolism , Developmental Disabilities/genetics , Genetic Predisposition to Disease , Spasms, Infantile/genetics , Child , Child, Preschool , Developmental Disabilities/complications , Developmental Disabilities/physiopathology , Female , Frameshift Mutation , HEK293 Cells , Humans , Infant , Male , Mutation, Missense , Protein Binding , Spasms, Infantile/complications , Ubiquitin-Protein Ligases/metabolism , Exome Sequencing
15.
Am J Hum Genet ; 98(5): 963-970, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27087320

ABSTRACT

Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions.


Subject(s)
Abnormalities, Multiple/etiology , Carrier Proteins/genetics , Chromosome Disorders/etiology , Developmental Disabilities/etiology , Haploinsufficiency/genetics , Mutation/genetics , Animals , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 1 , Female , Humans , Infant , Male , Mice , Phenotype , Prognosis
16.
Genet Med ; 21(2): 319-330, 2019 02.
Article in English | MEDLINE | ID: mdl-29875423

ABSTRACT

PURPOSE: Pathogenic variations in genes encoding aminoacyl-tRNA synthetases (ARSs) are increasingly associated with human disease. Clinical features of autosomal recessive ARS deficiencies appear very diverse and without apparent logic. We searched for common clinical patterns to improve disease recognition, insight into pathophysiology, and clinical care. METHODS: Symptoms were analyzed in all patients with recessive ARS deficiencies reported in literature, supplemented with unreported patients evaluated in our hospital. RESULTS: In literature, we identified 107 patients with AARS, DARS, GARS, HARS, IARS, KARS, LARS, MARS, RARS, SARS, VARS, YARS, and QARS deficiencies. Common symptoms (defined as present in ≥4/13 ARS deficiencies) included abnormalities of the central nervous system and/or senses (13/13), failure to thrive, gastrointestinal symptoms, dysmaturity, liver disease, and facial dysmorphisms. Deep phenotyping of 5 additional patients with unreported compound heterozygous pathogenic variations in IARS, LARS, KARS, and QARS extended the common phenotype with lung disease, hypoalbuminemia, anemia, and renal tubulopathy. CONCLUSION: We propose a common clinical phenotype for recessive ARS deficiencies, resulting from insufficient aminoacylation activity to meet translational demand in specific organs or periods of life. Assuming residual ARS activity, adequate protein/amino acid supply seems essential instead of the traditional replacement of protein by glucose in patients with metabolic diseases.


Subject(s)
Amino Acyl-tRNA Synthetases/deficiency , Genetic Diseases, Inborn/enzymology , Genetic Diseases, Inborn/genetics , Amino Acyl-tRNA Synthetases/genetics , Central Nervous System Diseases/enzymology , Central Nervous System Diseases/genetics , Child , Failure to Thrive/enzymology , Failure to Thrive/genetics , Feeding and Eating Disorders/enzymology , Feeding and Eating Disorders/genetics , Female , Genes, Recessive , Growth Disorders/enzymology , Growth Disorders/genetics , Humans , Liver Diseases/enzymology , Liver Diseases/genetics , Male , Phenotype
17.
Am J Med Genet A ; 179(10): 2075-2082, 2019 10.
Article in English | MEDLINE | ID: mdl-31361404

ABSTRACT

Zinc finger protein 462 (ZNF462) is a relatively newly discovered vertebrate specific protein with known critical roles in embryonic development in animal models. Two case reports and a case series study have described the phenotype of 10 individuals with ZNF462 loss of function variants. Herein, we present 14 new individuals with loss of function variants to the previous studies to delineate the syndrome of loss of function in ZNF462. Collectively, these 24 individuals present with recurring phenotypes that define a multiple congenital anomaly syndrome. Most have some form of developmental delay (79%) and a minority has autism spectrum disorder (33%). Characteristic facial features include ptosis (83%), down slanting palpebral fissures (58%), exaggerated Cupid's bow/wide philtrum (54%), and arched eyebrows (50%). Metopic ridging or craniosynostosis was found in a third of study participants and feeding problems in half. Other phenotype characteristics include dysgenesis of the corpus callosum in 25% of individuals, hypotonia in half, and structural heart defects in 21%. Using facial analysis technology, a computer algorithm applying deep learning was able to accurately differentiate individuals with ZNF462 loss of function variants from individuals with Noonan syndrome and healthy controls. In summary, we describe a multiple congenital anomaly syndrome associated with haploinsufficiency of ZNF462 that has distinct clinical characteristics and facial features.


Subject(s)
DNA-Binding Proteins/genetics , Nerve Tissue Proteins/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Facies , Female , Humans , Infant , Male , Phenotype , Syndrome
18.
Brain ; 141(8): 2299-2311, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29985992

ABSTRACT

The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.


Subject(s)
Neurodevelopmental Disorders/genetics , Repressor Proteins/genetics , Repressor Proteins/physiology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/physiology , Adolescent , Animals , Child , Child, Preschool , Female , Gene Expression Regulation/genetics , Germ-Line Mutation , Haploinsufficiency , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Infant , Lymphocytes/pathology , Lymphocytes/physiology , Male , Mice , Mutation , Repressor Proteins/metabolism , T-Lymphocytes/physiology , Transcription Factors/genetics , Tumor Suppressor Proteins/metabolism
19.
J Med Genet ; 55(11): 753-764, 2018 11.
Article in English | MEDLINE | ID: mdl-30120216

ABSTRACT

BACKGROUND: The combination of febrile illness-induced encephalopathy and rhabdomyolysis has thus far only been described in disorders that affect cellular energy status. In the absence of specific metabolic abnormalities, diagnosis can be challenging. OBJECTIVE: The objective of this study was to identify and characterise pathogenic variants in two individuals from unrelated families, both of whom presented clinically with a similar phenotype that included neurodevelopmental delay, febrile illness-induced encephalopathy and episodes of rhabdomyolysis, followed by developmental arrest, epilepsy and tetraplegia. METHODS: Whole exome sequencing was used to identify pathogenic variants in the two individuals. Biochemical and cell biological analyses were performed on fibroblasts from these individuals and a yeast two-hybrid analysis was used to assess protein-protein interactions. RESULTS: Probands shared a homozygous TRAPPC2L variant (c.109G>T) resulting in a p.Asp37Tyr missense variant. TRAPPC2L is a component of transport protein particle (TRAPP), a group of multisubunit complexes that function in membrane traffic and autophagy. Studies in patient fibroblasts as well as in a yeast system showed that the p.Asp37Tyr protein was present but not functional and resulted in specific membrane trafficking delays. The human missense mutation and the analogous mutation in the yeast homologue Tca17 ablated the interaction between TRAPPC2L and TRAPPC10/Trs130, a component of the TRAPP II complex. Since TRAPP II activates the GTPase RAB11, we examined the activation state of this protein and found increased levels of the active RAB, correlating with changes in its cellular morphology. CONCLUSIONS: Our study implicates a RAB11 pathway in the aetiology of the TRAPPC2L disorder and has implications for other TRAPP-related disorders with similar phenotypes.


Subject(s)
Alleles , Fibroblasts/metabolism , Mutation , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , rab GTP-Binding Proteins/genetics , Adolescent , Biomarkers , Biopsy , Child, Preschool , DNA Mutational Analysis , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Magnetic Resonance Imaging , Mutation, Missense , Phenotype , Protein Transport , Exome Sequencing
20.
J Biol Chem ; 292(30): 12621-12631, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28584052

ABSTRACT

N-Acetylglucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential and dynamic post-translational modification. The O-GlcNAc modification is present on numerous nuclear and cytosolic proteins and has been implicated in essential cellular functions such as signaling and gene expression. Accordingly, altered levels of protein O-GlcNAcylation have been associated with developmental defects and neurodegeneration. However, mutations in the OGT gene have not yet been functionally confirmed in humans. Here, we report on two hemizygous mutations in OGT in individuals with X-linked intellectual disability (XLID) and dysmorphic features: one missense mutation (p.Arg284Pro) and one mutation leading to a splicing defect (c.463-6T>G). Both mutations reside in the tetratricopeptide repeats of OGT that are essential for substrate recognition. We observed slightly reduced levels of OGT protein and reduced levels of its opposing enzyme O-GlcNAcase in both patient-derived fibroblasts, but global O-GlcNAc levels appeared to be unaffected. Our data suggest that mutant cells attempt to maintain global O-GlcNAcylation by down-regulating O-GlcNAcase expression. We also found that the c.463-6T>G mutation leads to aberrant mRNA splicing, but no stable truncated protein was detected in the corresponding patient-derived fibroblasts. Recombinant OGT bearing the p.Arg284Pro mutation was prone to unfolding and exhibited reduced glycosylation activity against a complex array of glycosylation substrates and proteolytic processing of the transcription factor host cell factor 1, which is also encoded by an XLID-associated gene. We conclude that defects in O-GlcNAc homeostasis and host cell factor 1 proteolysis may play roles in mediation of XLID in individuals with OGT mutations.


Subject(s)
Intellectual Disability/genetics , Mutation , N-Acetylglucosaminyltransferases/genetics , Cells, Cultured , Child , Child, Preschool , Cloning, Molecular , DNA/genetics , DNA/metabolism , Humans , Intellectual Disability/metabolism , Male , N-Acetylglucosaminyltransferases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL