Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Pharmacol Rev ; 72(1): 191-217, 2020 01.
Article in English | MEDLINE | ID: mdl-31843941

ABSTRACT

It is widely accepted that molecular reductionist views of highly complex human physiologic activity, e.g., the aging process, as well as therapeutic drug efficacy are largely oversimplifications. Currently some of the most effective appreciation of biologic disease and drug response complexity is achieved using high-dimensionality (H-D) data streams from transcriptomic, proteomic, metabolomics, or epigenomic pipelines. Multiple H-D data sets are now common and freely accessible for complex diseases such as metabolic syndrome, cardiovascular disease, and neurodegenerative conditions such as Alzheimer's disease. Over the last decade our ability to interrogate these high-dimensionality data streams has been profoundly enhanced through the development and implementation of highly effective bioinformatic platforms. Employing these computational approaches to understand the complexity of age-related diseases provides a facile mechanism to then synergize this pathologic appreciation with a similar level of understanding of therapeutic-mediated signaling. For informative pathology and drug-based analytics that are able to generate meaningful therapeutic insight across diverse data streams, novel informatics processes such as latent semantic indexing and topological data analyses will likely be important. Elucidation of H-D molecular disease signatures from diverse data streams will likely generate and refine new therapeutic strategies that will be designed with a cognizance of a realistic appreciation of the complexity of human age-related disease and drug effects. We contend that informatic platforms should be synergistic with more advanced chemical/drug and phenotypic cellular/tissue-based analytical predictive models to assist in either de novo drug prioritization or effective repurposing for the intervention of aging-related diseases. SIGNIFICANCE STATEMENT: All diseases, as well as pharmacological mechanisms, are far more complex than previously thought a decade ago. With the advent of commonplace access to technologies that produce large volumes of high-dimensionality data (e.g., transcriptomics, proteomics, metabolomics), it is now imperative that effective tools to appreciate this highly nuanced data are developed. Being able to appreciate the subtleties of high-dimensionality data will allow molecular pharmacologists to develop the most effective multidimensional therapeutics with effectively engineered efficacy profiles.


Subject(s)
Cardiovascular Diseases/drug therapy , Data Interpretation, Statistical , Metabolic Syndrome/drug therapy , Neurodegenerative Diseases/drug therapy , Pharmacology/methods , Animals , Computational Biology , Humans , Principal Component Analysis
2.
Int J Mol Sci ; 23(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35457203

ABSTRACT

During the aging process our body becomes less well equipped to deal with cellular stress, resulting in an increase in unrepaired damage. This causes varying degrees of impaired functionality and an increased risk of mortality. One of the most effective anti-aging strategies involves interventions that combine simultaneous glucometabolic support with augmented DNA damage protection/repair. Thus, it seems prudent to develop therapeutic strategies that target this combinatorial approach. Studies have shown that the ADP-ribosylation factor (ARF) GTPase activating protein GIT2 (GIT2) acts as a keystone protein in the aging process. GIT2 can control both DNA repair and glucose metabolism. Through in vivo co-regulation analyses it was found that GIT2 forms a close coexpression-based relationship with the relaxin-3 receptor (RXFP3). Cellular RXFP3 expression is directly affected by DNA damage and oxidative stress. Overexpression or stimulation of this receptor, by its endogenous ligand relaxin 3 (RLN3), can regulate the DNA damage response and repair processes. Interestingly, RLN3 is an insulin-like peptide and has been shown to control multiple disease processes linked to aging mechanisms, e.g., anxiety, depression, memory dysfunction, appetite, and anti-apoptotic mechanisms. Here we discuss the molecular mechanisms underlying the various roles of RXFP3/RLN3 signaling in aging and age-related disorders.


Subject(s)
Relaxin , Anxiety , Appetite , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Relaxin/genetics , Relaxin/metabolism , Signal Transduction/physiology
3.
Neuropsychobiology ; 79(4-5): 324-334, 2020.
Article in English | MEDLINE | ID: mdl-32392557

ABSTRACT

INTRODUCTION: Current diagnoses in psychiatry are solely based on the evaluation of clinical presentation by the treating psychiatrist. This results in a high percentage of misdiagnosis and consequential inefficient treatment; especially regarding major depressive disorder (MDD), depression in the context of bipolar disorder (BD-D), bipolar disorder with manic symptoms (BD-M), and psychosis in the context of schizophrenia (SZ). Objective biomarkers allowing for accurate discriminatory diagnostics are therefore urgently needed. METHODS: Peripheral blood mononuclear cell (PBMC) proteomes of patients with MDD (n = 5) , BD-D (n = 3), BD-M (n = 4), and SZ (n = 4), and also of healthy controls (HC; n = 6) were analyzed by state-of-the-art mass spectrometry. Proteins with a differential expression of a >2 standard deviation (SD) expression fold change from that of the HC and between either MDD versus BD-D or BD-M versus SZ were subsequently identified as potential discriminatory biomarkers. RESULTS: In total, 4,271 individual proteins were retrieved from the HC. Of these, about 2,800 were detected in all patient and HC samples. For objective discrimination between MDD and BD-D, 66 candidate biomarkers were found. In parallel, 72 proteins might harbor a biomarker capacity for differential diagnostics of BD-M and SZ. A single biomarker was contraregulated versus HC in each pair of comparisons. DISCUSSION: With this work, we provide a register of candidate biomarkers with the potential to objectively discriminate MDD from BD-D, and BD-M from SZ. Although concerning a proof-of-concept study with limited sample size, these data provide a stepping-stone for follow-up research on the validation of the true discriminatory potential and feasibility of clinical implementation of the discovered biomarker candidates.


Subject(s)
Bipolar Disorder/diagnosis , Bipolar Disorder/metabolism , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/metabolism , Leukocytes, Mononuclear/metabolism , Proteome/metabolism , Schizophrenia/diagnosis , Schizophrenia/metabolism , Adolescent , Adult , Biomarkers/blood , Bipolar Disorder/blood , Depressive Disorder, Major/blood , Female , Humans , Male , Middle Aged , Proof of Concept Study , Schizophrenia/blood , Young Adult
4.
J Biol Chem ; 292(27): 11508-11530, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28522608

ABSTRACT

The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior.


Subject(s)
Behavior, Animal , Dendritic Spines/metabolism , Learning , Memory , Neurites/metabolism , Receptors, G-Protein-Coupled/deficiency , Social Behavior , Animals , Dendritic Spines/pathology , Mice , Mice, Knockout , Neurites/pathology
5.
Int J Mol Sci ; 19(10)2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30261591

ABSTRACT

G protein-coupled receptors (GPCRs) and their associated proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity and genomic stability. Indeed, an increased rate of unrepaired DNA damage is considered to be one of the 'hallmarks' of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage, e.g., oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.


Subject(s)
DNA Damage , DNA Repair , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Aging/physiology , Animals , Energy Metabolism/physiology , Humans , Protein Interaction Maps/physiology
6.
Methods ; 92: 51-63, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-25986936

ABSTRACT

Ligands possessing different physico-chemical structures productively interact with G protein-coupled receptors generating distinct downstream signaling events due to their abilities to activate/select idiosyncratic receptor entities ('receptorsomes') from the full spectrum of potential receptor partners. We have employed multiple novel informatic approaches to identify and characterize the in vivo transcriptomic signature of an arrestin-signaling biased ligand, [D-Trp(12),Tyr(34)]-bPTH(7-34), acting at the parathyroid hormone type 1 receptor (PTH1R), across six different murine tissues after chronic drug exposure. We are able to demonstrate that [D-Trp(12),Tyr(34)]-bPTH(7-34) elicits a distinctive arrestin-signaling focused transcriptomic response that is more coherently regulated, in an arrestin signaling-dependent manner, across more tissues than that of the pluripotent endogenous PTH1R ligand, hPTH(1-34). This arrestin-focused response signature is strongly linked with the transcriptional regulation of cell growth and development. Our informatic deconvolution of a conserved arrestin-dependent transcriptomic signature from wild type mice demonstrates a conceptual framework within which the in vivo outcomes of biased receptor signaling may be further investigated or predicted.


Subject(s)
Gene Regulatory Networks/physiology , Informatics/methods , Parathyroid Hormone/pharmacology , Receptors, G-Protein-Coupled/physiology , Signal Transduction/physiology , Animals , Cattle , Gene Regulatory Networks/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Parathyroid Hormone/metabolism , Receptor, Parathyroid Hormone, Type 1/agonists , Receptor, Parathyroid Hormone, Type 1/physiology , Receptors, G-Protein-Coupled/agonists , Signal Transduction/drug effects
7.
Pharmacol Ther ; 223: 107793, 2021 07.
Article in English | MEDLINE | ID: mdl-33316288

ABSTRACT

Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based ß-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.


Subject(s)
Aging , Receptors, G-Protein-Coupled , Signal Transduction , Aging/physiology , Humans , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology
8.
Comput Struct Biotechnol J ; 17: 1265-1277, 2019.
Article in English | MEDLINE | ID: mdl-31921393

ABSTRACT

Aging is a complex biological process that is inevitable for nearly all organisms. Aging is the strongest risk factor for development of multiple neurodegenerative disorders, cancer and cardiovascular disorders. Age-related disease conditions are mainly caused by the progressive degradation of the integrity of communication systems within and between organs. This is in part mediated by, i) decreased efficiency of receptor signaling systems and ii) an increasing inability to cope with stress leading to apoptosis and cellular senescence. Cellular senescence is a natural process during embryonic development, more recently it has been shown to be also involved in the development of aging disorders and is now considered one of the major hallmarks of aging. G-protein-coupled receptors (GPCRs) comprise a superfamily of integral membrane receptors that are responsible for cell signaling events involved in nearly every physiological process. Recent advances in the molecular understanding of GPCR signaling complexity have expanded their therapeutic capacity tremendously. Emerging data now suggests the involvement of GPCRs and their associated proteins in the development of cellular senescence. With the proven efficacy of therapeutic GPCR targeting, it is reasonable to now consider GPCRs as potential platforms to control cellular senescence and the consequently, age-related disorders.

9.
Aging (Albany NY) ; 11(23): 11268-11313, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31794429

ABSTRACT

DNA damage response (DDR) processes, often caused by oxidative stress, are important in aging and -related disorders. We recently showed that G protein-coupled receptor (GPCR) kinase interacting protein 2 (GIT2) plays a key role in both DNA damage and oxidative stress. Multiple tissue analyses in GIT2KO mice demonstrated that GIT2 expression affects the GPCR relaxin family peptide 3 receptor (RXFP3), and is thus a therapeutically-targetable system. RXFP3 and GIT2 play similar roles in metabolic aging processes. Gaining a detailed understanding of the RXFP3-GIT2 functional relationship could aid the development of novel anti-aging therapies. We determined the connection between RXFP3 and GIT2 by investigating the role of RXFP3 in oxidative stress and DDR. Analyzing the effects of oxidizing (H2O2) and DNA-damaging (camptothecin) stressors on the interacting partners of RXFP3 using Affinity Purification-Mass Spectrometry, we found multiple proteins linked to DDR and cell cycle control. RXFP3 expression increased in response to DNA damage, overexpression, and Relaxin 3-mediated stimulation of RXFP3 reduced phosphorylation of DNA damage marker H2AX, and repair protein BRCA1, moderating DNA damage. Our data suggests an RXFP3-GIT2 system that could regulate cellular degradation after DNA damage, and could be a novel mechanism for mitigating the rate of age-related damage accumulation.


Subject(s)
DNA Damage , GTPase-Activating Proteins/metabolism , Gene Expression Regulation/drug effects , Oxidative Stress , Receptors, G-Protein-Coupled/metabolism , Camptothecin/toxicity , Computational Biology , Felodipine , GTPase-Activating Proteins/genetics , Gene Expression Regulation/physiology , Gene Regulatory Networks , HEK293 Cells , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/genetics , Topoisomerase I Inhibitors/toxicity
10.
Methods Mol Biol ; 2011: 671-723, 2019.
Article in English | MEDLINE | ID: mdl-31273728

ABSTRACT

The initial diagnosis, molecular investigation, treatment, and posttreatment care of major psychiatric disorders (schizophrenia and bipolar depression) are all still significantly hindered by the current inability to define these disorders in an explicit molecular signaling manner. High-dimensionality data analytics, using large datastreams from transcriptomic, proteomic, or metabolomic investigations, will likely advance both the appreciation of the molecular nature of major psychiatric disorders and simultaneously enhance our ability to more efficiently diagnose and treat these debilitating conditions. High-dimensionality data analysis in psychiatric research has been heterogeneous in aims and methods and limited by insufficient sample sizes, poorly defined case definitions, methodological inhomogeneity, and confounding results. All of these issues combine to constrain the conclusions that can be extracted from them. Here, we discuss possibilities for overcoming methodological challenges through the implementation of transcriptomic, proteomic, or metabolomics signatures in psychiatric diagnosis and offer an outlook for future investigations. To fulfill the promise of intelligent high-dimensionality data-based differential diagnosis in mental disease diagnosis and treatment, future research will need large, well-defined cohorts in combination with state-of-the-art technologies.


Subject(s)
Biomarkers , Computational Biology , Disease Susceptibility , Mental Disorders/etiology , Mental Disorders/metabolism , Animals , Computational Biology/methods , Data Interpretation, Statistical , Gene Expression Profiling , Humans , Mental Disorders/diagnosis , Mental Disorders/psychology , Metabolomics/methods , Phenotype , Proteome , Proteomics/methods , Transcriptome
11.
Neurobiol Aging ; 74: 77-89, 2019 02.
Article in English | MEDLINE | ID: mdl-30439596

ABSTRACT

A large proportion of the population suffers from endocrine disruption, e.g., menopausal women, which might result in accelerated aging and a higher risk for developing cognitive disorders. Therefore, it is crucial to fully understand the impact of such disruptions on the brain to identify potential therapeutic strategies. Here, we show using resting-state functional magnetic resonance imaging that ovariectomy and consequent hypothalamus-pituitary-gonadal disruption result in the selective dysconnectivity of 2 discrete brain regions in mice. This effect coincided with cognitive deficits and an underlying pathological molecular phenotype involving an imbalance of neurodevelopmental/neurodegenerative signaling. Furthermore, this quantitative mass spectrometry proteomics-based analysis of molecular signaling patterns further identified a strong involvement of altered dopaminergic functionality (e.g., DAT and predicted upstream regulators DRD3, NR4A2), reproductive signaling (e.g., Srd5a2), rotatin expression (rttn), cellular aging (e.g., Rxfp3, Git2), myelination, and axogenesis (e.g., Nefl, Mag). With this, we have provided an improved understanding of the impact of hypothalamus-pituitary-gonadal dysfunction and highlighted the potential of using a highly translational magnetic resonance imaging technique for monitoring these effects on the brain.


Subject(s)
Brain/pathology , Brain/physiopathology , Cognitive Dysfunction/etiology , Ovariectomy/adverse effects , Animals , Brain/diagnostic imaging , Brain/metabolism , Cell Cycle Proteins , Cellular Senescence/genetics , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Female , Gene Expression , Hypothalamo-Hypophyseal System , Magnetic Resonance Imaging , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Pituitary-Adrenal System , Receptors, Dopamine D3/genetics , Receptors, Dopamine D3/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
12.
Mech Ageing Dev ; 184: 111150, 2019 12.
Article in English | MEDLINE | ID: mdl-31574270

ABSTRACT

In most species, females live longer than males. An understanding of this female longevity advantage will likely uncover novel anti-aging therapeutic targets. Here we investigated the transcriptomic responses in the hypothalamus - a key organ for somatic aging control - to the introduction of a simple aging-related molecular perturbation, i.e. GIT2 heterozygosity. Our previous work has demonstrated that GIT2 acts as a network controller of aging. A similar number of both total (1079-female, 1006-male) and gender-unique (577-female, 527-male) transcripts were significantly altered in response to GIT2 heterozygosity in early life-stage (2 month-old) mice. Despite a similar volume of transcriptomic disruption in females and males, a considerably stronger dataset coherency and functional annotation representation was observed for females. It was also evident that female mice possessed a greater resilience to pro-aging signaling pathways compared to males. Using a highly data-dependent natural language processing informatics pipeline, we identified novel functional data clusters that were connected by a coherent group of multifunctional transcripts. From these it was clear that females prioritized metabolic activity preservation compared to males to mitigate this pro-aging perturbation. These findings were corroborated by somatic metabolism analyses of living animals, demonstrating the efficacy of our new informatics pipeline.


Subject(s)
Aging/genetics , Aging/physiology , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/physiology , Hypothalamus/metabolism , Animals , Cluster Analysis , Computational Biology , Female , Longevity/genetics , Longevity/physiology , Male , Mice , Mice, Inbred C57BL , RNA/biosynthesis , RNA/genetics , Sex Characteristics , Signal Transduction/genetics , Signal Transduction/physiology , Transcriptome
13.
Cell Rep ; 28(13): 3287-3299.e6, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31553900

ABSTRACT

Desensitization, signaling, and trafficking of G-protein-coupled receptors (GPCRs) are critically regulated by multifunctional adaptor proteins, ß-arrestins (ßarrs). The two isoforms of ßarrs (ßarr1 and 2) share a high degree of sequence and structural similarity; still, however, they often mediate distinct functional outcomes in the context of GPCR signaling and regulation. A mechanistic basis for such a functional divergence of ßarr isoforms is still lacking. By using a set of complementary approaches, including antibody-fragment-based conformational sensors, we discover structural differences between ßarr1 and 2 upon their interaction with activated and phosphorylated receptors. Interestingly, domain-swapped chimeras of ßarrs display robust complementation in functional assays, thereby linking the structural differences between receptor-bound ßarr1 and 2 with their divergent functional outcomes. Our findings reveal important insights into the ability of ßarr isoforms to drive distinct functional outcomes and underscore the importance of integrating this aspect in the current framework of biased agonism.


Subject(s)
beta-Arrestins/chemistry , HEK293 Cells , Humans , Molecular Dynamics Simulation , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Homology, Amino Acid , Signal Transduction , beta-Arrestins/genetics , beta-Arrestins/metabolism
14.
Front Pharmacol ; 9: 1369, 2018.
Article in English | MEDLINE | ID: mdl-30546309

ABSTRACT

G protein coupled receptors (GPCRs) were first characterized as signal transducers that elicit downstream effects through modulation of guanine (G) nucleotide-binding proteins. The pharmacotherapeutic exploitation of this signaling paradigm has created a drug-based field covering nearly 50% of the current pharmacopeia. Since the groundbreaking discoveries of the late 1990s to the present day, it is now clear however that GPCRs can also generate productive signaling cascades through the modulation of ß-arrestin functionality. ß-Arrestins were first thought to only regulate receptor desensitization and internalization - exemplified by the action of visual arrestin with respect to rhodopsin desensitization. Nearly 20 years ago, it was found that rather than controlling GPCR signal termination, productive ß-arrestin dependent GPCR signaling paradigms were highly dependent on multi-protein complex formation and generated long-lasting cellular effects, in contrast to G protein signaling which is transient and functions through soluble second messenger systems. ß-Arrestin signaling was then first shown to activate mitogen activated protein kinase signaling in a G protein-independent manner and eventually initiate protein transcription - thus controlling expression patterns of downstream proteins. While the possibility of developing ß-arrestin biased or functionally selective ligands is now being investigated, no additional research has been performed on its possible contextual specificity in treating age-related disorders. The ability of ß-arrestin-dependent signaling to control complex and multidimensional protein expression patterns makes this therapeutic strategy feasible, as treating complex age-related disorders will likely require therapeutics that can exert network-level efficacy profiles. It is our understanding that therapeutically targeting G protein-independent effectors such as ß-arrestin will aid in the development of precision medicines with tailored efficacy profiles for disease/age-specific contextualities.

15.
Front Pharmacol ; 9: 1484, 2018.
Article in English | MEDLINE | ID: mdl-30618771

ABSTRACT

Complex aging-triggered disorders are multifactorial programs that comprise a myriad of alterations in interconnected protein networks over a broad range of tissues. It is evident that rather than being randomly organized events, pathophysiologies that possess a strong aging component such as cardiovascular diseases (hypertensions, atherosclerosis, and vascular stiffening) and neurodegenerative conditions (dementia, Alzheimer's disease, mild cognitive impairment, Parkinson's disease), in essence represent a subtly modified version of the intricate molecular programs already in place for normal aging. To control such multidimensional activities there are layers of trophic protein control across these networks mediated by so-called "keystone" proteins. We propose that these "keystones" coordinate and interconnect multiple signaling pathways to control whole somatic activities such as aging-related disease etiology. Given its ability to control multiple receptor sensitivities and its broad protein-protein interactomic nature, we propose that G protein coupled receptor kinase 5 (GRK5) represents one of these key network controllers. Considerable data has emerged, suggesting that GRK5 acts as a bridging factor, allowing signaling regulation in pathophysiological settings to control the connectivity between both the cardiovascular and neurophysiological complications of aging.

16.
Ageing Res Rev ; 43: 46-63, 2018 May.
Article in English | MEDLINE | ID: mdl-29452267

ABSTRACT

Since its discovery, G protein-coupled receptor kinase-interacting protein 2, GIT2, and its family member, GIT1, have received considerable interest concerning their potential key roles in regulating multiple inter-connected physiological and pathophysiological processes. GIT2 was first identified as a multifunctional protein that is recruited to G protein-coupled receptors (GPCRs) during the process of receptor internalization. Recent findings have demonstrated that perhaps one of the most important effects of GIT2 in physiology concerns its role in controlling multiple aspects of the complex ageing process. Ageing can be considered the most prevalent pathophysiological condition in humans, affecting all tissue systems and acting as a driving force for many common and intractable disorders. The ageing process involves a complex interplay among various deleterious activities that profoundly disrupt the body's ability to cope with damage, thus increasing susceptibility to pathophysiologies such as neurodegeneration, central obesity, osteoporosis, type 2 diabetes mellitus and atherosclerosis. The biological systems that control ageing appear to function as a series of interconnected complex networks. The inter-communication among multiple lower-complexity signaling systems within the global ageing networks is likely coordinated internally by keystones or hubs, which regulate responses to dynamic molecular events through protein-protein interactions with multiple distinct partners. Multiple lines of research have suggested that GIT2 may act as one of these network coordinators in the ageing process. Identifying and targeting keystones, such as GIT2, is thus an important approach in our understanding of, and eventual ability to, medically ameliorate or interdict age-related progressive cellular and tissue damage.


Subject(s)
Aging/genetics , Aging/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aging/pathology , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Phosphoproteins/genetics , Phosphoproteins/metabolism
17.
Aging (Albany NY) ; 9(3): 706-740, 2017 03 04.
Article in English | MEDLINE | ID: mdl-28260693

ABSTRACT

Recent research has proposed that GIT2 (G protein-coupled receptor kinase interacting protein 2) acts as an integrator of the aging process through regulation of 'neurometabolic' integrity. One of the commonly accepted hallmarks of the aging process is thymic involution. At a relatively young age, 12 months old, GIT2-/- mice present a prematurely distorted thymic structure and dysfunction compared to age-matched 12 month-old wild-type control (C57BL/6) mice. Disruption of thymic structure in GIT2-/- (GIT2KO) mice was associated with a significant reduction in the expression of the cortical thymic marker, Troma-I (cytokeratin 8). Double positive (CD4+CD8+) and single positive CD4+ T cells were also markedly reduced in 12 month-old GIT2KO mice compared to age-matched control wild-type mice. Coincident with this premature thymic disruption in GIT2KO mice was the unique generation of a novel cervical 'organ', i.e. 'parathymic lobes'. These novel organs did not exhibit classical peripheral lymph node-like characteristics but expressed high levels of T cell progenitors that were reflexively reduced in GIT2KO thymi. Using signaling pathway analysis of GIT2KO thymus and parathymic lobe transcriptomic data we found that the molecular signaling functions lost in the dysfunctional GIT2KO thymus were selectively reinstated in the novel parathymic lobe - suggestive of a compensatory effect for the premature thymic disruption. Broader inspection of high-dimensionality transcriptomic data from GIT2KO lymph nodes, spleen, thymus and parathymic lobes revealed a systemic alteration of multiple proteins (Dbp, Tef, Per1, Per2, Fbxl3, Ddit4, Sin3a) involved in the multidimensional control of cell cycle clock regulation, cell senescence, cellular metabolism and DNA damage. Altered cell clock regulation across both immune and non-immune tissues therefore may be responsible for the premature 'aging' phenotype of GIT2KO mice.


Subject(s)
Aging, Premature/genetics , Aging/genetics , Cell Cycle Proteins/genetics , Cellular Senescence/genetics , Immune System/physiopathology , Phosphoproteins/genetics , Thymus Gland/physiopathology , Aging/immunology , Aging/physiology , Aging, Premature/immunology , Aging, Premature/physiopathology , Animals , GTPase-Activating Proteins , Intercellular Signaling Peptides and Proteins , Keratin-8/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , Thymus Gland/immunology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL