Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Am J Hum Genet ; 111(6): 1206-1221, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38772379

ABSTRACT

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Subject(s)
Neurodevelopmental Disorders , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Epilepsy/genetics , Exome Sequencing , Genetic Diseases, X-Linked/genetics , Heterozygote , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Pedigree , Phenotype , Shal Potassium Channels/genetics
2.
Eur J Med Genet ; 69: 104949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797245

ABSTRACT

Variation in the non-coding genome is being increasingly recognized to be involved in monogenic disease etiology. However, the interpretation of non-coding variation is complicated by a lack of understanding of how non-coding genetic elements function. Additional lines of evidence are therefore needed to recognize non-coding variants as pathogenic. We here present a case where a collective body of evidence resulted in the identification and conclusive classification of a pathogenic deep intronic variant in ATRX. This report demonstrates the utility of a multi-platform approach in aiding the identification of pathogenic variants outside coding regions. Furthermore, it marks the first reported instance of a deep intronic pathogenic variant in ATRX.


Subject(s)
Introns , X-linked Nuclear Protein , Humans , X-linked Nuclear Protein/genetics , Male , Mutation , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/pathology , Mental Retardation, X-Linked/diagnosis
3.
Cell Death Dis ; 15(5): 379, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816421

ABSTRACT

CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.


Subject(s)
Intellectual Disability , Membrane Proteins , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Female , Male , Neurodevelopmental Disorders/genetics , Alleles , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Child , Child, Preschool , Cell Differentiation/genetics , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL