Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brain ; 141(9): 2592-2604, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30084953

ABSTRACT

Autosomal recessive cerebellar ataxias are a group of rare disorders that share progressive degeneration of the cerebellum and associated tracts as the main hallmark. Here, we report two unrelated patients with a new subtype of autosomal recessive cerebellar ataxia caused by biallelic, gene-disruptive mutations in GDAP2, a gene previously not implicated in disease. Both patients had onset of ataxia in the fourth decade. Other features included progressive spasticity and dementia. Neuropathological examination showed degenerative changes in the cerebellum, olive inferior, thalamus, substantia nigra, and pyramidal tracts, as well as tau pathology in the hippocampus and amygdala. To provide further evidence for a causative role of GDAP2 mutations in autosomal recessive cerebellar ataxia pathophysiology, its orthologous gene was investigated in the fruit fly Drosophila melanogaster. Ubiquitous knockdown of Drosophila Gdap2 resulted in shortened lifespan and motor behaviour anomalies such as righting defects, reduced and uncoordinated walking behaviour, and compromised flight. Gdap2 expression levels responded to stress treatments in control flies, and Gdap2 knockdown flies showed increased sensitivity to deleterious effects of stressors such as reactive oxygen species and nutrient deprivation. Thus, Gdap2 knockdown in Drosophila and GDAP2 loss-of-function mutations in humans lead to locomotor phenotypes, which may be mediated by altered responses to cellular stress.


Subject(s)
Cerebellar Ataxia/genetics , Cerebellar Ataxia/physiopathology , Nerve Tissue Proteins/genetics , Adult , Animals , Ataxia/genetics , Ataxia/physiopathology , Cerebellar Ataxia/metabolism , Cerebellum/physiology , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Female , Gene Knockdown Techniques/methods , Genes, Recessive , Genetic Predisposition to Disease/genetics , Humans , Middle Aged , Mutation , Nerve Tissue Proteins/physiology , Phenotype , Stress, Physiological/genetics , Stress, Physiological/physiology
2.
PLoS One ; 14(2): e0211652, 2019.
Article in English | MEDLINE | ID: mdl-30753188

ABSTRACT

FOXP proteins form a subfamily of evolutionarily conserved transcription factors involved in the development and functioning of several tissues, including the central nervous system. In humans, mutations in FOXP1 and FOXP2 have been implicated in cognitive deficits including intellectual disability and speech disorders. Drosophila exhibits a single ortholog, called FoxP, but due to a lack of characterized mutants, our understanding of the gene remains poor. Here we show that the dimerization property required for mammalian FOXP function is conserved in Drosophila. In flies, FoxP is enriched in the adult brain, showing strong expression in ~1000 neurons of cholinergic, glutamatergic and GABAergic nature. We generate Drosophila loss-of-function mutants and UAS-FoxP transgenic lines for ectopic expression, and use them to characterize FoxP function in the nervous system. At the cellular level, we demonstrate that Drosophila FoxP is required in larvae for synaptic morphogenesis at axonal terminals of the neuromuscular junction and for dendrite development of dorsal multidendritic sensory neurons. In the developing brain, we find that FoxP plays important roles in α-lobe mushroom body formation. Finally, at a behavioral level, we show that Drosophila FoxP is important for locomotion, habituation learning and social space behavior of adult flies. Our work shows that Drosophila FoxP is important for regulating several neurodevelopmental processes and behaviors that are related to human disease or vertebrate disease model phenotypes. This suggests a high degree of functional conservation with vertebrate FOXP orthologues and established flies as a model system for understanding FOXP related pathologies.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/growth & development , Forkhead Transcription Factors/physiology , Nervous System/growth & development , Animals , Animals, Genetically Modified , Behavior, Animal , Brain/growth & development , Brain/metabolism , Conserved Sequence , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Forkhead Transcription Factors/genetics , Gene Knockdown Techniques , Locomotion , Mushroom Bodies/growth & development , Mushroom Bodies/metabolism , Nervous System/metabolism , Real-Time Polymerase Chain Reaction , Sensory Receptor Cells/physiology , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL