Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS Genet ; 20(3): e1011188, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442125

ABSTRACT

Bacteria have evolved complex transcriptional regulatory networks, as well as many diverse regulatory strategies at the RNA level, to enable more efficient use of metabolic resources and a rapid response to changing conditions. However, most RNA-based regulatory mechanisms are not well conserved across different bacterial species despite controlling genes important for virulence or essential biosynthetic processes. Here, we characterize the activity of, and assess the fitness benefit conferred by, twelve cis-acting regulatory RNAs (including several riboswitches and a T-box), in the opportunistic pathogen Streptococcus pneumoniae TIGR4. By evaluating native locus mutants of each regulator that result in constitutively active or repressed expression, we establish that growth defects in planktonic culture are associated with constitutive repression of gene expression, while constitutive activation of gene expression is rarely deleterious. In contrast, in mouse nasal carriage and pneumonia models, strains with either constitutively active and repressed gene expression are significantly less fit than matched control strains. Furthermore, two RNA-regulated pathways, FMN synthesis/transport and pyrimidine synthesis/transport display exceptional sensitivity to mis-regulation or constitutive gene repression in both planktonic culture and in vivo environments. Thus, despite lack of obvious phenotypes associated with constitutive gene expression in vitro, the fitness benefit conferred on bacteria via fine-tuned metabolic regulation through cis-acting regulatory RNAs is substantial in vivo, and therefore easily sufficient to drive the evolution and maintenance of diverse RNA regulatory mechanisms.


Subject(s)
RNA , Streptococcus pneumoniae , Animals , Mice , Streptococcus pneumoniae/genetics , RNA/metabolism , Virulence/genetics , Phenotype , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 121(10): e2321910121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38422018

ABSTRACT

Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part by Outer Membrane Vesicles (OMVs). Here, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron (Bt). We identified a family of Dual membrane-spanning anti-sigma factors (Dma) that control OMV biogenesis. We conducted molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, modulates OMV production by controlling the activity of the ECF21 family sigma factor, Das1, and its downstream regulon. Dma1 has a previously uncharacterized domain organization that enables Dma1 to span both the inner and outer membrane of Bt. Phylogenetic analyses reveal that this common feature of the Dma family is restricted to the phylum Bacteroidota. This study provides mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.


Subject(s)
Bacteroides thetaiotaomicron , Humans , Bacteroides thetaiotaomicron/genetics , Sigma Factor , Phylogeny
3.
Angew Chem Int Ed Engl ; 63(9): e202316428, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38279536

ABSTRACT

Heterologous tRNAs used for noncanonical amino acid (ncAA) mutagenesis in mammalian cells typically show poor activity. We recently introduced a virus-assisted directed evolution strategy (VADER) that can enrich improved tRNA mutants from naïve libraries in mammalian cells. However, VADER was limited to processing only a few thousand mutants; the inability to screen a larger sequence space precluded the identification of highly active variants with distal synergistic mutations. Here, we report VADER2.0, which can process significantly larger mutant libraries. It also employs a novel library design, which maintains base-pairing between distant residues in the stem regions, allowing us to pack a higher density of functional mutants within a fixed sequence space. VADER2.0 enabled simultaneous engineering of the entire acceptor stem of M. mazei pyrrolysyl tRNA (tRNAPyl ), leading to a remarkably improved variant, which facilitates more efficient incorporation of a wider range of ncAAs, and enables facile development of viral vectors and stable cell-lines for ncAA mutagenesis.


Subject(s)
Amino Acids , Amino Acyl-tRNA Synthetases , Amino Acids/chemistry , Amino Acyl-tRNA Synthetases/genetics , Escherichia coli/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Mutagenesis
4.
JACS Au ; 4(7): 2484-2491, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39055144

ABSTRACT

The ever-expanding antibiotic resistance urgently calls for novel antibacterial therapeutics, especially those with a new mode of action. We report herein our exploration of protein-protein interaction (PPI) inhibition as a new mechanism to thwart bacterial pathogenesis. Specifically, we describe potent and specific inhibitors of the pneumococcal surface protein PspC, an important virulence factor that facilitates the infection of Streptococcus pneumoniae. Specifically, PspC has been documented to recruit human complement factor H (hFH) to suppress host complement activation and/or promote the bacterial attachment to host tissues. The CCP9 domain of hFH was recombinantly expressed to inhibit the PspC-hFH interaction as demonstrated on live pneumococcal cells. The inhibitor allowed for the first pharmacological intervention of the PspC-hFH interaction. This PPI inhibition reduced pneumococci's attachment to epithelial cells and also resensitized the D39 strain of S. pneumoniae for opsonization. Importantly, we have further devised covalent versions of CCP9, which afforded long-lasting PspC inhibition with low nanomolar potency. Overall, our results showcase the promise of PPI inhibition for combating bacterial infections as well as the power of covalent inhibitors.

5.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38645180

ABSTRACT

Acinetobacter baumannii is associated with multidrug resistant (MDR) infections in healthcare settings, with fluoroquinolones such as ciprofloxacin being currently ineffective. Clinical isolates largely harbor mutations in the GyrA and TopoIV fluoroquinolone targets, as well as mutations that increase expression of drug resistance-nodulation-division (RND) efflux pumps. Factors critical for maintaining fitness levels of pump overproducers are uncharacterized despite their prevalence in clinical isolates. We here identify proteins that contribute to the fitness of FQR strains overexpressing three known RND systems using high-density insertion mutagenesis. Overproduction of the AdeFGH efflux pump caused hypersensitization to defects in outer membrane homeostatic regulation, including lesions that reduced LOS biosynthesis and blocked production of the major A. baumannii porin. In contrast, AdeAB pump overproduction, which does not affect the outer membrane pump component, was relatively tolerant to loss of these functions, consistent with outer membrane protein overproduction being the primary disruptive component. Surprisingly, overproduction of proton-transporting efflux pumps had little impact on cytosolic pH, consistent with a compensatory response to pump activity. The most striking transcriptional changes were associated with AdeFGH pump overproduction, resulting in activation of the phenylacetate (PAA) degradation regulon. Disruption of the PAA pathway resulted in cytosolic acidification and defective expression of genes involved in protection from peroxide stress. These results indicate that the RND outer membrane protein overproduction is compensated by cytoplasmic buffering and maintenance of outer membrane integrity in A. baumannii to facilitate fitness of FQR isolates.

6.
Nat Microbiol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030344

ABSTRACT

Genetic interactions identify functional connections between genes and pathways, establishing gene functions or druggable targets. Here we use CRISPRi-TnSeq, CRISPRi-mediated knockdown of essential genes alongside TnSeq-mediated knockout of non-essential genes, to map genome-wide interactions between essential and non-essential genes in Streptococcus pneumoniae. Transposon-mutant libraries constructed in 13 CRISPRi strains enabled screening of ~24,000 gene pairs. This identified 1,334 genetic interactions, including 754 negative and 580 positive interactions. Network analyses show that 17 non-essential genes pleiotropically interact with more than half the essential genes tested. Validation experiments confirmed that a 7-gene subset protects against perturbations. Furthermore, we reveal hidden redundancies that compensate for essential gene loss, relationships between cell wall synthesis, integrity and cell division, and show that CRISPRi-TnSeq identifies synthetic and suppressor-type relationships between both functionally linked and disparate genes and pathways. Importantly, in species where CRISPRi and Tn-Seq are established, CRISPRi-TnSeq should be straightforward to implement.

7.
ACS Synth Biol ; 13(7): 2141-2149, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38904157

ABSTRACT

The Escherichia coli leucyl-tRNA synthetase (EcLeuRS)/tRNAEcLeu pair has been engineered to genetically encode a structurally diverse group of enabling noncanonical amino acids (ncAAs) in eukaryotes, including those with bioconjugation handles, environment-sensitive fluorophores, photocaged amino acids, and native post-translational modifications. However, the scope of this toolbox in mammalian cells is limited by the poor activity of tRNAEcLeu. Here, we overcome this limitation by evolving tRNAEcLeu directly in mammalian cells by using a virus-assisted selection scheme. This directed evolution platform was optimized for higher throughput such that the entire acceptor stem of tRNAEcLeu could be simultaneously engineered, which resulted in the identification of several variants with remarkably improved efficiency for incorporating a wide range of ncAAs. The advantage of the evolved leucyl tRNAs was demonstrated by expressing ncAA mutants in mammalian cells that were challenging to express before using the wild-type tRNAEcLeu, by creating viral vectors that facilitated ncAA mutagenesis at a significantly lower dose and by creating more efficient mammalian cell lines stably expressing the ncAA-incorporation machinery.


Subject(s)
Amino Acids , Directed Molecular Evolution , Escherichia coli , Mutagenesis , Directed Molecular Evolution/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Amino Acids/genetics , Amino Acids/metabolism , HEK293 Cells , Leucine-tRNA Ligase/genetics , Leucine-tRNA Ligase/metabolism
8.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798593

ABSTRACT

Acinetobacter baumannii causes life-threatening infections that are becoming difficult to treat due to increasing rates of multi-drug resistance (MDR) among clinical isolates. This has led the World Health Organization and the CDC to categorize MDR A. baumannii as a top priority for the research and development of new antibiotics. Colistin is the last-resort antibiotic to treat carbapenem-resistant A. baumannii . Not surprisingly, reintroduction of colistin has resulted in the emergence of colistin-resistant strains. Diclofenac is a nonsteroidal anti-inflammatory drug used to treat pain and inflammation associated with arthritis. In this work, we show that diclofenac sensitizes colistin-resistant A. baumannii clinical strains to colistin, in vitro and in a murine model of pneumonia. Diclofenac also reduced the colistin MIC of Klebsiella pneumoniae and Pseudomonas aeruginosa isolates. Transcriptomic and proteomic analyses revealed an upregulation of oxidative stress-related genes and downregulation of type IV pili induced by the combination treatment. Notably, the concentrations of colistin and diclofenac effective in the murine model were substantially lower than those determined in vitro , implying a stronger synergistic effect in vivo compared to in vitro . A pilA mutant strain, lacking the primary component of the type IV pili, became sensitive to colistin in the absence of diclofenac. This suggest that the downregulation of type IV pili is key for the synergistic activity of these drugs in vivo and indicates that colistin and diclofenac exert an anti-virulence effect. Together, these results suggest that the diclofenac can be repurposed with colistin to treat MDR A. baumannii .

9.
mBio ; 15(2): e0282823, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38193698

ABSTRACT

Streptococcus pneumoniae is a major human pathogen of global health concern and the rapid emergence of antibiotic resistance poses a serious public health problem worldwide. Fluoroquinolone resistance in S. pneumoniae is an intriguing case because the prevalence of fluoroquinolone resistance does not correlate with increasing usage and has remained rare. Our data indicate that deleterious fitness costs in the mammalian host constrain the emergence of fluoroquinolone resistance both by de novo mutation and recombination. S. pneumoniae was able to circumvent such deleterious fitness costs via the development of antibiotic tolerance through metabolic adaptation that reduced the production of reactive oxygen species, resulting in a fitness benefit during infection of mice treated with fluoroquinolones. These data suggest that the emergence of fluoroquinolone resistance is tightly constrained in S. pneumoniae by fitness tradeoffs and that mutational pathways involving metabolic networks to enable tolerance phenotypes are an important contributor to the evasion of antibiotic-mediated killing.IMPORTANCEThe increasing prevalence of antibiotic resistant bacteria is a major global health concern. While many species have the potential to develop antibiotic resistance, understanding the barriers to resistance emergence in the clinic remains poorly understood. A prime example of this is fluroquinolone resistance in Streptococcus pneumoniae, whereby, despite continued utilization, resistance to this class of antibiotic remains rare. In this study, we found that the predominant pathways for developing resistance to this antibiotic class severely compromised the infectious capacity of the pneumococcus, providing a key impediment for the emergence of resistance. Using in vivo models of experimental evolution, we found that S. pneumoniae responds to repeated fluoroquinolone exposure by modulating key metabolic pathways involved in the generation of redox molecules, which leads to antibiotic treatment failure in the absence of appreciable shifts in resistance levels. These data underscore the complex pathways available to pathogens to evade antibiotic mediating killing via antibiotic tolerance.


Subject(s)
Fluoroquinolones , Pneumococcal Infections , Humans , Animals , Mice , Fluoroquinolones/pharmacology , Streptococcus pneumoniae/metabolism , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Mammals
10.
ACS Appl Bio Mater ; 7(7): 4622-4632, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38954405

ABSTRACT

Wastewater-based epidemiology (WBE) can help mitigate the spread of respiratory infections through the early detection of viruses, pathogens, and other biomarkers in human waste. The need for sample collection, shipping, and testing facilities drives up the cost of WBE and hinders its use for rapid detection and isolation in environments with small populations and in low-resource settings. Given the ubiquitousness and regular outbreaks of respiratory syncytial virus, SARS-CoV-2, and various influenza strains, there is a rising need for a low-cost and easy-to-use biosensing platform to detect these viruses locally before outbreaks can occur and monitor their progression. To this end, we have developed an easy-to-use, cost-effective, multiplexed platform able to detect viral loads in wastewater with several orders of magnitude lower limit of detection than that of mass spectrometry. This is enabled by wafer-scale production and aptamers preattached with linker molecules, producing 44 chips at once. Each chip can simultaneously detect four target analytes using 20 transistors segregated into four sets of five for each analyte to allow for immediate statistical analysis. We show our platform's ability to rapidly detect three virus proteins (SARS-CoV-2, RSV, and Influenza A) and a population normalization molecule (caffeine) in wastewater. Going forward, turning these devices into hand-held systems would enable wastewater epidemiology in low-resource settings and be instrumental for rapid, local outbreak prevention.


Subject(s)
Biosensing Techniques , Graphite , SARS-CoV-2 , Wastewater , Wastewater/virology , Wastewater/chemistry , SARS-CoV-2/isolation & purification , Humans , Biosensing Techniques/methods , Graphite/chemistry , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/virology , Respiratory Syncytial Viruses/isolation & purification , Materials Testing , Wastewater-Based Epidemiological Monitoring , Biocompatible Materials/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL