Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004146

ABSTRACT

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Subject(s)
Hippocampus/cytology , Neocortex/cytology , Transcriptome/genetics , Animals , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Mice, Inbred C57BL , Mice, Transgenic
2.
Nature ; 624(7991): 403-414, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092914

ABSTRACT

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Subject(s)
Brain , Gene Expression Profiling , Neural Pathways , Neurons , Spinal Cord , Animals , Mice , Hypothalamus , Neurons/metabolism , Neuropeptides , Spinal Cord/cytology , Spinal Cord/metabolism , Brain/cytology , Brain/metabolism , Neurotransmitter Agents , Mesencephalon/cytology , Reticular Formation/cytology , Electrophysiology , Cerebellum/cytology , Cerebral Cortex/cytology
3.
Nature ; 624(7991): 317-332, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092916

ABSTRACT

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.


Subject(s)
Brain , Gene Expression Profiling , Transcriptome , Animals , Mice , Brain/anatomy & histology , Brain/cytology , Brain/metabolism , Datasets as Topic , In Situ Hybridization, Fluorescence , Neural Pathways , Neurons/classification , Neurons/metabolism , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , RNA/analysis , Single-Cell Gene Expression Analysis , Transcription Factors/metabolism , Transcriptome/genetics
4.
Nature ; 598(7879): 195-199, 2021 10.
Article in English | MEDLINE | ID: mdl-34616073

ABSTRACT

Full-length SMART-seq1 single-cell RNA sequencing can be used to measure gene expression at isoform resolution, making possible the identification of specific isoform markers for different cell types. Used in conjunction with spatial RNA capture and gene-tagging methods, this enables the inference of spatially resolved isoform expression for different cell types. Here, in a comprehensive analysis of 6,160 mouse primary motor cortex cells assayed with SMART-seq, 280,327 cells assayed with MERFISH2 and 94,162 cells assayed with 10x Genomics sequencing3, we find examples of isoform specificity in cell types-including isoform shifts between cell types that are masked in gene-level analysis-as well as examples of transcriptional regulation. Additionally, we show that isoform specificity helps to refine cell types, and that a multi-platform analysis of single-cell transcriptomic data leveraging multiple measurements provides a comprehensive atlas of transcription in the mouse primary motor cortex that improves on the possibilities offered by any single technology.


Subject(s)
Gene Expression Profiling , In Situ Hybridization, Fluorescence , Motor Cortex/cytology , Neurons/classification , Single-Cell Analysis , Transcriptome , Animals , Atlases as Topic , Female , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Glutamates/metabolism , Male , Mice , Mice, Inbred C57BL , Motor Cortex/anatomy & histology , Neurons/cytology , Neurons/metabolism , Organ Specificity , Sequence Analysis
5.
Proc Natl Acad Sci U S A ; 119(18): e2115638119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35476521

ABSTRACT

A key property of adult stem cells is their ability to persist in a quiescent state for prolonged periods of time. The quiescent state is thought to contribute to stem cell resilience by limiting accumulation of DNA replication­associated mutations. Moreover, cellular stress response factors are thought to play a role in maintaining quiescence and stem cell integrity. We utilized muscle stem cells (MuSCs) as a model of quiescent stem cells and find that the replication stress response protein, ATR (Ataxia Telangiectasia and Rad3-Related), is abundant and active in quiescent but not activated MuSCs. Concurrently, MuSCs display punctate RPA (replication protein A) and R-loop foci, both key triggers for ATR activation. To discern the role of ATR in MuSCs, we generated MuSC-specific ATR conditional knockout (ATRcKO) mice. Surprisingly, ATR ablation results in increased MuSC quiescence exit. Phosphoproteomic analysis of ATRcKO MuSCs reveals enrichment of phosphorylated cyclin F, a key component of the Skp1­Cul1­F-box protein (SCF) ubiquitin ligase complex and regulator of key cell-cycle transition factors, such as the E2F family of transcription factors. Knocking down cyclin F or inhibiting the SCF complex results in E2F1 accumulation and in MuSCs exiting quiescence, similar to ATR-deficient MuSCs. The loss of ATR could be counteracted by inhibiting casein kinase 2 (CK2), the kinase responsible for phosphorylating cyclin F. We propose a model in which MuSCs express cell-cycle progression factors but ATR, in coordination with the cyclin F­SCF complex, represses premature stem cell quiescence exit via ubiquitin­proteasome degradation of these factors.


Subject(s)
Cell Cycle Proteins , Cyclins , Cell Cycle , Cell Cycle Proteins/metabolism , Cell Division , Cyclins/genetics , Cyclins/metabolism , Stem Cells/metabolism
6.
Nature ; 540(7632): 276-279, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27894125

ABSTRACT

Platelet-derived growth factor receptor α (PDGFRα) exhibits divergent effects in skeletal muscle. At physiological levels, signalling through this receptor promotes muscle development in growing embryos and angiogenesis in regenerating adult muscle. However, both increased PDGF ligand abundance and enhanced PDGFRα pathway activity cause pathological fibrosis. This excessive collagen deposition, which is seen in aged and diseased muscle, interferes with muscle function and limits the effectiveness of gene- and cell-based therapies for muscle disorders. Although compelling evidence exists for the role of PDGFRα in fibrosis, little is known about the cells through which this pathway acts. Here we show in mice that PDGFRα signalling regulates a population of muscle-resident fibro/adipogenic progenitors (FAPs) that play a supportive role in muscle regeneration but may also cause fibrosis when aberrantly regulated. We found that FAPs produce multiple transcriptional variants of Pdgfra with different polyadenylation sites, including an intronic variant that codes for a protein isoform containing a truncated kinase domain. This variant, upregulated during regeneration, acts as a decoy to inhibit PDGF signalling and to prevent FAP over-activation. Moreover, increasing the expression of this isoform limits fibrosis in vivo in mice, suggesting both biological relevance and therapeutic potential of modulating polyadenylation patterns in stem-cell populations.


Subject(s)
Introns/genetics , Muscle, Skeletal/pathology , Muscular Diseases/prevention & control , Polyadenylation , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Regeneration/genetics , Stem Cells/metabolism , Adipocytes/cytology , Adipocytes/pathology , Adipogenesis , Animals , Fibroblasts/cytology , Fibroblasts/pathology , Fibrosis/genetics , Fibrosis/pathology , Fibrosis/prevention & control , Male , Mice , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscular Diseases/genetics , Muscular Diseases/pathology , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, Platelet-Derived Growth Factor alpha/chemistry , Signal Transduction/genetics , Stem Cells/cytology , Stem Cells/pathology
7.
Proc Natl Acad Sci U S A ; 114(43): E8996-E9005, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29073096

ABSTRACT

Tissue regeneration depends on the timely activation of adult stem cells. In skeletal muscle, the adult stem cells maintain a quiescent state and proliferate upon injury. We show that muscle stem cells (MuSCs) use direct translational repression to maintain the quiescent state. High-resolution single-molecule and single-cell analyses demonstrate that quiescent MuSCs express high levels of Myogenic Differentiation 1 (MyoD) transcript in vivo, whereas MyoD protein is absent. RNA pulldowns and costainings show that MyoD mRNA interacts with Staufen1, a potent regulator of mRNA localization, translation, and stability. Staufen1 prevents MyoD translation through its interaction with the MyoD 3'-UTR. MuSCs from Staufen1 heterozygous (Staufen1+/-) mice have increased MyoD protein expression, exit quiescence, and begin proliferating. Conversely, blocking MyoD translation maintains the quiescent phenotype. Collectively, our data show that MuSCs express MyoD mRNA and actively repress its translation to remain quiescent yet primed for activation.


Subject(s)
Gene Expression Regulation/physiology , MyoD Protein/metabolism , RNA-Binding Proteins/metabolism , Stem Cells/physiology , Animals , Cell Differentiation , Mice , Muscle Cells/physiology , MyoD Protein/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
8.
Brain Behav Immun ; 70: 118-130, 2018 05.
Article in English | MEDLINE | ID: mdl-29454023

ABSTRACT

Acute hypothermia treatment (HT) is the only clinically established intervention following neonatal hypoxic-ischemic brain injury. However, almost half of all cooled infants still die or suffer from long-lasting neurological impairments. Regenerative therapies, such as mesenchymal stem cells (MSC) appear promising as adjuvant therapy. In the present study, we hypothesized that HT combined with delayed MSC therapy results in augmented protection, improving long-term neurological outcome. Postnatal day 9 (P9) C57BL/6 mice were exposed to hypoxia-ischemia followed by 4 h HT. Murine bone marrow-derived MSC (1 × 106 cells/animal) were administered intranasally at P12. Cytokine and growth factor levels were assessed by ELISA and Luminex® multiplex assay 24 h following MSC delivery. One week after HI, tissue injury and neuroinflammatory responses were determined by immunohistochemistry and western blot. Long-term motor-cognitive outcome was assessed 5 weeks post injury. MSC responses to the brains' environment were evaluated by gene expression analysis in MSC, co-cultured with brain homogenates isolated at P12. Both, MSC and HT improved motor deficits, while cognitive function could only be restored by MSC. Compared to each single therapy, combined treatment led to increased long-lasting motor-cognitive deficits and exacerbated brain injury, accompanied by enhanced endothelial activation and peripheral immune cell infiltration. MSC co-cultured with brain extracts of HT-treated animals revealed increased pro-inflammatory cytokine and decreased growth factor expression. In vivo protein analysis showed higher pro-inflammatory cytokine levels after combined treatment compared to single therapy. Furthermore, HI-induced increase in growth factors was normalized to control levels by HT and MSC single therapy, while the combination induced a further decline below control levels. Our results suggest that alteration of the brains' microenvironment by acute HT modulates MSC function resulting in a pro-inflammatory environment combined with alteration of the homeostatic growth factor milieu in the neonatal hypoxic-ischemic brain. This study delineates potential unexpected side effects of cell-based therapies as add-on therapy for acute hypothermia treatment.


Subject(s)
Hypothermia/physiopathology , Hypoxia-Ischemia, Brain/physiopathology , Mesenchymal Stem Cells/physiology , Administration, Intranasal , Animals , Animals, Newborn/physiology , Behavior, Animal , Brain , Brain Injuries , Cell Proliferation , Disease Models, Animal , Humans , Hypothermia, Induced/methods , Mesenchymal Stem Cell Transplantation/methods , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins
9.
J Neurosci Res ; 95(5): 1225-1236, 2017 05.
Article in English | MEDLINE | ID: mdl-27781299

ABSTRACT

Cell therapy has emerged as a potential treatment for many neurodegenerative diseases including stroke and neonatal ischemic brain injury. Delayed intranasal administration of mesenchymal stem cells (MSCs) after experimental hypoxia-ischemia and after a transient middle cerebral artery occlusion (tMCAO) in neonatal rats has shown improvement in long-term functional outcomes, but the effects of MSCs on white matter injury (WMI) are insufficiently understood. In this study we used longitudinal T2-weighted (T2W) and diffusion tensor magnetic resonance imaging (MRI) to characterize chronic injury after tMCAO induced in postnatal day 10 (P10) rats and examined the effects of delayed MSC administration on WMI, axonal coverage, and long-term somatosensory function. We show unilateral injury- and region-dependent changes in diffusion fraction anisotropy 1 and 2 weeks after tMCAO that correspond to accumulation of degraded myelin basic protein, astrocytosis, and decreased axonal coverage. With the use of stringent T2W-based injury criteria at 72 hr after tMCAO to randomize neonatal rats to receive intranasal MSCs or vehicle, we show that a single MSC administration attenuates WMI and enhances somatosensory function 28 days after stroke. A positive correlation was found between MSC-enhanced white matter integrity and functional performance in injured neonatal rats. Collectively, these data indicate that the damage induced by tMCAO progresses over time and is halted by administration of MSCs. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging , Mesenchymal Stem Cells/physiology , White Matter/pathology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Bromodeoxyuridine/metabolism , Disease Models, Animal , Gene Expression Regulation, Developmental/physiology , Glial Fibrillary Acidic Protein/metabolism , Image Processing, Computer-Assisted , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/therapy , Lectins/metabolism , Myelin Basic Protein/metabolism , Psychomotor Disorders/etiology , Rats , Rats, Sprague-Dawley , White Matter/metabolism
10.
Dev Neurosci ; 37(2): 142-52, 2015.
Article in English | MEDLINE | ID: mdl-25765537

ABSTRACT

Neonatal encephalopathy due to perinatal hypoxia-ischemia (HI) is a severe condition, and current treatment options are limited. Expression of endogenous osteopontin (OPN), a multifunction glycoprotein, is strongly upregulated in the brain after neonatal HI. Intracerebrally administered OPN has been shown to be neuroprotective following experimental neonatal HI and adult stroke. In the present study, we determined whether intranasal, intraperitoneal or intracerebral treatment with a smaller TAT-OPN peptide is neuroprotective in neonatal mice with HI brain damage. The TAT-OPN peptide exerts bioactivity as it was as potent as full-length OPN in inducing cell adhesion in an in vitro adhesion assay. Intranasal administration of TAT-OPN peptide immediately after HI (T0) or in a repetitive treatment schedule of T0, 3 h, day (D) 1, 2 and 3 after HI did not protect cerebral gray or white matter after HI. Intraperitoneal TAT-OPN treatment at T0 or in two extended treatment schedules (D5, 7, 9, 11, 13, 15 after HI or T0, D1, 3, 5, 7, 9, 11, 13 and 15 after HI) did not result in neuroprotection either. Moreover, no functional improvement (cylinder rearing test and adhesive removal task) was observed following TAT-OPN treatment in any of the intraperitoneal treatment schedules. We validated that the TAT-OPN peptide reached the brain after intranasal or intraperitoneal administration by using an HIV-TAT staining. Finally, also intracerebral administration of the TAT-OPN peptide 1 h after HI did not reduce cerebral damage. Our data show that administration of the TAT-OPN peptide did not exert neuroprotective effects on neonatal HI-induced brain injury or sensorimotor behavioral deficits.


Subject(s)
Hypoxia-Ischemia, Brain/drug therapy , Neuroprotective Agents , Osteopontin/administration & dosage , Osteopontin/pharmacology , Administration, Intranasal , Animals , Animals, Newborn , Behavior, Animal/drug effects , Disease Models, Animal , Female , Infusions, Intralesional , Injections, Intraperitoneal , Male , Mice , Mice, Inbred C57BL
11.
Pediatr Res ; 78(5): 520-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26270577

ABSTRACT

BACKGROUND: For clinical translation, we assessed whether intranasal mesenchymal stem cell (MSC) treatment after hypoxia-ischemia (HI) induces neoplasia in the brain or periphery at 14 mo. Furthermore, the long-term effects of MSCs on behavior and lesion size were determined. METHOD: HI was induced in 9-d-old mice. Pups received an intranasal administration of 0.5 × 10(6) MSCs or vehicle at 10 d post-HI. Full macroscopical and microscopical pathological analysis of 39 organs per mouse was performed. Sensorimotor behavior was assessed in the cylinder-rearing test at 10 d, 28 d, 6 mo, and 9 mo. Cognition was measured with the novel object recognition test at 3 and 14 mo post-HI. Lesion size was determined by analyzing mouse-anti-microtubule-associated protein 2 (MAP2) and mouse-anti-myelin basic protein (MBP) staining at 5 wk and 14 mo. RESULTS: At 14 mo post-HI, we did not observe any neoplasia in the nasal turbinates, brain, or other organs of HI mice treated with MSCs. Furthermore, our results show that MSC-induced improvement of sensorimotor and cognitive function is long lasting. In contrast, HI-vehicle mice showed severe behavioral impairment. Recovery of MAP2- and MBP-positive area lasted up to 14 mo following MSC treatment. CONCLUSION: Our results provide strong evidence of the long-term safety and positive effects of MSC treatment following neonatal HI in mice.


Subject(s)
Brain/surgery , Hypoxia-Ischemia, Brain/surgery , Mesenchymal Stem Cell Transplantation/methods , Microtubule-Associated Proteins/metabolism , Animals , Animals, Newborn , Behavior, Animal , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Brain/physiopathology , Cells, Cultured , Cognition , Disease Models, Animal , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/physiopathology , Hypoxia-Ischemia, Brain/psychology , Mesenchymal Stem Cell Transplantation/adverse effects , Mice, Inbred C57BL , Motor Activity , Myelin Basic Protein/metabolism , Recognition, Psychology , Recovery of Function , Risk Assessment , Time Factors
12.
Mol Ther ; 22(3): 645-654, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24172866

ABSTRACT

Mesenchymal stem cells (MSCs) have been shown to improve outcomes after neonatal hypoxic-ischemic (HI) brain injury possibly by secretion of growth factors stimulating repair processes. We investigated whether MSCs, modified to secrete specific growth factors, can further enhance recovery. Using an in vitro assay, we show that MSC-secreting brain derived neurotrophic factor (BDNF), epidermal growth factor-like 7 (EGFL7), persephin (PSP), or sonic hedgehog (SHH) regulate proliferation and differentiation of neural stem cells. Moreover, mice that received an intranasal application of 100,000 MSC-BDNF showed significantly improved outcomes as demonstrated by improved motor function and decreased lesion volume compared with mice treated with empty vector (EV) MSCs. Treatment with MSC-EGFL7 improved motor function but had no effect on lesion size. Treatment with MSC-PSP or MSC-SHH neither improved outcome nor reduced lesion size in comparison with MSC-EV-treated mice. Moreover, mice treated with MSC-SHH showed even decreased functional outcomes when compared with those treated with MSC-EV. Treatment with MSC-BDNF induced cell proliferation in the ischemic hemisphere lasting at least 18 days after MSC administration, whereas treatment with MSC-EV did not. These data suggest that gene-modified cell therapy might be a useful approach to consider for treatment of neonatal HI brain damage. However, care must be taken when selecting the agent to overexpress.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/administration & dosage , Hypoxia-Ischemia, Brain/therapy , Mesenchymal Stem Cells/metabolism , Neural Stem Cells/metabolism , Administration, Intranasal , Animals , Animals, Newborn , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Binding Proteins , Cell Differentiation , Cell Proliferation , EGF Family of Proteins , Genetic Vectors/therapeutic use , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Hypoxia-Ischemia, Brain/pathology , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oligodendroglia/metabolism , Proteins/genetics , Proteins/metabolism , Transduction, Genetic , Treatment Outcome
13.
J Neuroinflammation ; 11: 2, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24386932

ABSTRACT

Subarachnoid hemorrhage (SAH) represents a considerable health problem. To date, limited therapeutic options are available. In order to develop effective therapeutic strategies for SAH, the mechanisms involved in SAH brain damage should be fully explored. Here we review the mechanisms of SAH brain damage induced by the experimental endovascular puncture model. We have included a description of similarities and distinctions between experimental SAH in animals and human SAH pathology. Moreover, several novel treatment options to diminish SAH brain damage are discussed.SAH is accompanied by cerebral inflammation as demonstrated by an influx of inflammatory cells into the cerebral parenchyma, upregulation of inflammatory transcriptional pathways and increased expression of cytokines and chemokines. Additionally, various cell death pathways including cerebral apoptosis, necrosis, necroptosis and autophagy are involved in neuronal damage caused by SAH.Treatment strategies aiming at inhibition of inflammatory or cell death pathways demonstrate the importance of these mechanisms for survival after experimental SAH. Moreover, neuroregenerative therapies using stem cells are discussed as a possible strategy to repair the brain after SAH since this therapy may extend the window of treatment considerably. We propose the endovascular puncture model as a suitable animal model which resembles the human pathology of SAH and which could be applied to investigate novel therapeutic therapies to combat this debilitating insult.


Subject(s)
Brain Injuries/etiology , Punctures/adverse effects , Subarachnoid Hemorrhage/etiology , Animals , Apoptosis , Brain Injuries/therapy , Cytokines/metabolism , Disease Models, Animal , Humans , Signal Transduction , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/therapy
14.
Elife ; 122024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319699

ABSTRACT

Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4130 retrogradely labeled cells and 2914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.


In the brain, messages are relayed from one cell to the next through intricate networks of axons and dendrites that physically interact at junctions known as synapses. Mapping out this synaptic connectivity ­ that is, exactly which neurons are connected via synapses ­ remains a major challenge. Monosynaptic tracing is a powerful approach that allows neuroscientists to explore neural networks by harnessing viruses which spread between neurons via synapses, in particular the rabies virus. This pathogen travels exclusively from 'postsynaptic' to 'presynaptic' neurons ­ from the cell that receives a message at a synapse, back to the one that sends it. A modified variant of the rabies virus can therefore be used to reveal the presynaptic cells connecting to a population of neurons in which it has been originally introduced. However, this method does not allow scientists to identify the exact postsynaptic neuron that each presynaptic cell is connected to. One way to bypass this issue is to combine monosynaptic tracing with RNA barcoding to create distinct versions of the modified rabies virus, which are then introduced into separate populations of neurons. Tracking the spread of each version allows neuroscientists to spot exactly which presynaptic cells signal to each postsynaptic neuron. So far, this approach has been used to examine synaptic connectivity in neurons grown in the laboratory, but it remains difficult to apply it to neurons in the brain. In response, Zhang, Jin et al. aimed to demonstrate how monosynaptic tracing that relies on barcoded rabies viruses could be used to dissect neural networks in the mouse brain. First, they confirmed that it was possible to accurately detect which version of the virus had spread to presynaptic neurons using both in situ and single-cell RNA sequencing. Next, they described how this information could be analysed to build models of potential neural networks, and what type of additional experiments are required for this work. Finally, they used the approach to identify neurons that tend to connect to the same postsynaptic cells and then investigated what these have in common, showing how the technique enables a finer understanding of neural circuits. Overall, the work by Zhang, Jin et al. provides a comprehensive review of the requirements and limitations associated with monosynaptic tracing experiments based on barcoded rabies viruses, as well as how the approach could be optimized in the future. This information will be of broad interest to scientists interested in mapping neural networks in the brain.


Subject(s)
Rabies virus , Animals , Mice , Rabies virus/genetics , Neuroanatomy , Neurons , Sequence Analysis, RNA , RNA
15.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948843

ABSTRACT

The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that play adaptive and integrative roles in a variety of brain functions. There is a wide array of GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all regions of the mouse telencephalon and their developmental origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and postnatal developing mouse brain. We present a hierarchically organized adult telencephalic GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051 clusters, as well as a corresponding developmental taxonomy of 450 clusters across different ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell types reflect both spatial locations and developmental origins. Transcriptomically and developmentally related cell types can often be found in distant and diverse brain regions indicating that long-distance migration and dispersion is a common characteristic of nearly all classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of both discrete and continuous variations among related cell types that are correlated with gene expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic neuronal types emerge simultaneously during the embryonic stage with limited postnatal diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural and functional studies of cell types and circuits by the entire community.

16.
Stroke ; 44(5): 1426-32, 2013 May.
Article in English | MEDLINE | ID: mdl-23539530

ABSTRACT

BACKGROUND AND PURPOSE: Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We investigated whether MSC treatment improves recovery after neonatal stroke and whether MSC overexpressing brain-derived neurotrophic factor (MSC-BDNF) further enhances recovery. METHODS: We performed 1.5-hour transient middle cerebral artery occlusion in 10-day-old rats. Three days after reperfusion, pups with evidence of injury by diffusion-weighted MRI were treated intranasally with MSC, MSC-BDNF, or vehicle. To determine the effect of MSC treatment, brain damage, sensorimotor function, and cerebral cell proliferation were analyzed. RESULTS: Intranasal delivery of MSC- and MSC-BDNF significantly reduced infarct size and gray matter loss in comparison with vehicle-treated rats without any significant difference between MSC- and MSC-BDNF-treatment. Treatment with MSC-BDNF significantly reduced white matter loss with no significant difference between MSC- and MSC-BDNF-treatment. Motor deficits were also improved by MSC treatment when compared with vehicle-treated rats. MSC-BDNF-treatment resulted in an additional significant improvement of motor deficits 14 days after middle cerebral artery occlusion, but there was no significant difference between MSC or MSC-BDNF 28 days after middle cerebral artery occlusion. Furthermore, treatment with either MSC or MSC-BDNF induced long-lasting cell proliferation in the ischemic hemisphere. CONCLUSIONS: Intranasal administration of MSC after neonatal stroke is a promising therapy for treatment of neonatal stroke. In this experimental paradigm, MSC- and BNDF-hypersecreting MSC are equally effective in reducing ischemic brain damage.


Subject(s)
Brain-Derived Neurotrophic Factor/therapeutic use , Brain/pathology , Infarction, Middle Cerebral Artery/therapy , Mesenchymal Stem Cell Transplantation/methods , Stroke/therapy , Animals , Cell Proliferation , Disease Models, Animal , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Nerve Fibers, Myelinated/pathology , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Stroke/pathology
17.
Ann Neurol ; 71(6): 785-96, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22718545

ABSTRACT

OBJECTIVE: A study was undertaken to investigate the effect of neonatal hypoxic-ischemic (HI) brain damage and mesenchymal stem cell (MSC) treatment on the structure and contralesional connectivity of motor function-related cerebral areas. METHODS: Brain remodeling after HI±MSC treatment in neonatal mice was analyzed using diffusion tensor magnetic resonance imaging, immunohistochemistry, anterograde tracing with biotinylated dextran amine (BDA), and retrograde tracing with fluorescent pseudorabies virus (PRV). RESULTS: MSC treatment after HI reduced contralesional rewiring taking place after HI. Following MSC treatment, fractional anisotropy values, which were increased in both ipsi- and contralesional cortices and decreased in the corpus callosum (CC) after HI, were normalized to the level observed in sham-operated mice. These results were corroborated by myelin basic protein intensity and staining pattern in these areas. Anterograde tracing of ipsilesional motor neurons showed that after MSC treatment, fewer BDA-positive fibers crossed the CC and extended into the contralesional motor cortex compared to HI mice. This remodeling was functional, because retrograde labeling showed increased connectivity between impaired (left) forepaw and the contralesional (left) motor cortex after HI, whereas MSC treatment reduced this connection and increased the connection between the impaired (left) forepaw and the ipsilesional (right) motor cortex. Finally, the extent of contralesional rewiring measured with BDA and PRV tracing was related to sensorimotor dysfunction. INTERPRETATION: This is the first study to describe MSC treatment after neonatal HI markedly reducing contralesional axonal remodeling induced by HI brain injury.


Subject(s)
Brain Ischemia/surgery , Cerebral Cortex/physiopathology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Recovery of Function/physiology , Age Factors , Animals , Animals, Newborn , Anisotropy , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Axons/physiology , Biotin/analogs & derivatives , Brain Ischemia/pathology , DNA-Binding Proteins/metabolism , Dextrans , Diffusion Tensor Imaging , Disease Models, Animal , Functional Laterality , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Basic Protein/metabolism , Neural Pathways/physiology , Nuclear Proteins/metabolism , Psychomotor Performance/physiology , Time Factors , Ubiquitin-Protein Ligases , Red Fluorescent Protein
18.
bioRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-36993334

ABSTRACT

Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4,130 retrogradely labeled cells and 2,914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.

19.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-38168182

ABSTRACT

Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making it challenging to identify precise areas and cell types of the brain that are more susceptible to aging than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2 million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types, suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific, age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and subcortical regions of the brain, and specific gene expression changes associated with cell senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus, including tanycytes, ependymal cells, and Tbx3+ neurons found in the arcuate nucleus that are part of the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain. Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal aging that will serve as a foundation for the investigation of functional changes in the aging process and the interaction of aging and diseases.

20.
bioRxiv ; 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-37034735

ABSTRACT

The mammalian brain is composed of millions to billions of cells that are organized into numerous cell types with specific spatial distribution patterns and structural and functional properties. An essential step towards understanding brain function is to obtain a parts list, i.e., a catalog of cell types, of the brain. Here, we report a comprehensive and high-resolution transcriptomic and spatial cell type atlas for the whole adult mouse brain. The cell type atlas was created based on the combination of two single-cell-level, whole-brain-scale datasets: a single-cell RNA-sequencing (scRNA-seq) dataset of ~7 million cells profiled, and a spatially resolved transcriptomic dataset of ~4.3 million cells using MERFISH. The atlas is hierarchically organized into five nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 supertypes and 5,200 clusters. We systematically analyzed the neuronal, non-neuronal, and immature neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell type organization in different brain regions, in particular, a dichotomy between the dorsal and ventral parts of the brain: the dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. We also systematically characterized cell-type specific expression of neurotransmitters, neuropeptides, and transcription factors. The study uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types across the brain, suggesting they mediate a myriad of modes of intercellular communications. Finally, we found that transcription factors are major determinants of cell type classification in the adult mouse brain and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole-mouse-brain transcriptomic and spatial cell type atlas establishes a benchmark reference atlas and a foundational resource for deep and integrative investigations of cell type and circuit function, development, and evolution of the mammalian brain.

SELECTION OF CITATIONS
SEARCH DETAIL