Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur J Neurosci ; 55(6): 1492-1503, 2022 03.
Article in English | MEDLINE | ID: mdl-35229387

ABSTRACT

Although aggression has been linked to disturbances of circadian rhythm, insight into the neural substrate of this association is currently lacking. The suprachiasmatic nucleus (SCN) of the hypothalamus, the master circadian clock, is regulated by clock genes and known to influence the secretion of cortisosterone and testosterone, important hormones implicated in aggression. Here, we investigated deviations in the regulation of the locomotor circadian rhythm and hormonal levels in a mouse model of abnormal aggression. We tested aggressive BALB/cJ and control BALB/cByJ mice in the resident-intruder paradigm and compared them on their locomotor circadian rhythm during a 12 h light/12 h dark cycle and constant darkness. State (serum) corticosterone and trait (hair) corticosterone and testosterone levels were determined, and immunohistochemistry was performed to assess the expression of important clock proteins, PER1 and PER2, in the core and shell of the SCN at the start of their active phase. Compared with BALB/cByJ mice, aggressive BALB/cJ mice displayed: (1) a shorter free-running period in constant darkness; (2) reduced state corticosterone variability between circadian peak and trough but no differences in corticosterone trait levels; (3) lower testosterone trait levels; (4) higher PER1 expression in the SCN shell with no changes in PER2 in either SCN subregion during the early dark phase. Together, these results suggest that aggressive BALB/cJ mice have disturbances in different components encompassing the circadian and hormonal cycle, emphasizing their value for future investigation of the causal relationship between SCN function, circadian clocks and aggression.


Subject(s)
Circadian Rhythm , Corticosterone , Aggression , Animals , Circadian Rhythm/physiology , Corticosterone/metabolism , Mice , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Suprachiasmatic Nucleus/physiology , Testosterone/metabolism
2.
Nat Commun ; 15(1): 4866, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849373

ABSTRACT

Dense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain several epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown. Using breast carcinoma organoids, we show that Collagen I drives a force-dependent loop, specifically in basal-like cancer cells. The feed-forward loop is centered around the mechanotransducer Yap and independent of K14 expression. Yap promotes a transcriptional program that enhances Collagen I alignment and tension, which further activates Yap. Active Yap is detected in invading breast cancer cells in patients and required for collective invasion in 3D Collagen I and in the mammary fat pad of mice. Our work uncovers an essential function for Yap in leader cell selection during collective cancer invasion.


Subject(s)
Adaptor Proteins, Signal Transducing , Breast Neoplasms , Collagen Type I , Mechanotransduction, Cellular , Neoplasm Invasiveness , Transcription Factors , YAP-Signaling Proteins , Animals , Female , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Cell Line, Tumor , Collagen Type I/metabolism , Gene Expression Regulation, Neoplastic , Organoids/metabolism , Organoids/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism
3.
Neuro Oncol ; 17(7): 935-41, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25691693

ABSTRACT

BACKGROUND: The efficacy of novel targeted therapies is often tested at the time of tumor recurrence. However, for glioblastoma (GBM) patients, surgical resections at recurrence are performed only in a minority of patients; therefore, molecular data are predominantly derived from the initial tumor. Molecular data of the initial tumor for patient selection into personalized medicine trials can therefore be used only when the specific genetic change is retained in the recurrent tumor. METHODS: In this study we determined whether EGFR amplification and expression of the most common mutation in GBMs (EGFRvIII) is retained at tumor recurrence. Because retention of genetic changes may be dependent on the initial treatment, we only used a cohort of GBM samples that were uniformly treated according to the current standard of care (ie, chemo-irradiation with temozolomide). RESULTS: Our data show that, in spite of some quantitative differences, the EGFR amplification status remains stable in the majority (84%) of tumors evaluated. EGFRvIII expression remained similar in 79% of GBMs. However, within the tumors expressing EGFRvIII at initial diagnosis, approximately one-half lose their EGFRvIII expression at tumor recurrence. CONCLUSIONS: The relative stability of EGFR amplification indicates that molecular data obtained in the primary tumor can be used to predict the EGFR status of the recurrent tumor, but care should be taken in extrapolating EGFRvIII expression from the primary tumor, particularly when expressed at first diagnosis.


Subject(s)
Brain Neoplasms/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioblastoma/genetics , Neoplasm Recurrence, Local/metabolism , Adult , Aged , Brain Neoplasms/metabolism , Female , Gene Amplification , Glioblastoma/metabolism , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL