Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Physiol Rev ; 99(4): 1877-2013, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31460832

ABSTRACT

The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.


Subject(s)
Bacteria/metabolism , Brain Diseases/microbiology , Brain/microbiology , Gastrointestinal Microbiome , Intestines/microbiology , Age Factors , Aging , Animals , Bacteria/immunology , Bacteria/pathogenicity , Behavior , Brain/immunology , Brain/metabolism , Brain/physiopathology , Brain Diseases/metabolism , Brain Diseases/physiopathology , Brain Diseases/psychology , Dysbiosis , Enteric Nervous System/metabolism , Enteric Nervous System/microbiology , Enteric Nervous System/physiopathology , Host-Pathogen Interactions , Humans , Intestines/immunology , Neuroimmunomodulation , Neuronal Plasticity , Risk Factors
2.
Pediatr Res ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294240

ABSTRACT

BACKGROUND: Public health measures implemented during the COVID-19 pandemic fundamentally altered the socioecological context in which children were developing. METHODS: Using Bronfenbrenner's socioecological theory, we investigate language acquisition among 2-year-old children (n = 4037) born during the pandemic. We focus on "late talkers", defined as children below the 10th percentile on the MacArthur-Bates Communicative Development Inventories-III. RESULTS: Overall, the proportion of late talkers declined as a function of pandemic wave, with 13.0% of those born during the first wave classified as late talkers compared to 10.4% born in wave two, and 8.0% born during wave three. In sex-based analysis, we observed a 15.9% prevalence of late talking among female toddlers, which was significantly different from the norming sample. In contrast, the prevalence of late talking among male toddlers was 9.1%. Using hierarchical logistic regression to identify both proximal and distal factors associated with being a late talker, we found that male sex, lower socioeconomic status, greater screen time, receiving childcare at home, disruptions to childcare, and experiencing greater exposure to public health restrictions were associated with increased odds for being a late talker. CONCLUSION: We interpret the findings in relation to the need to consider the special needs of young children in disaster preparation and response. IMPACT: Two-year-old children acquiring language in the context of the COVID-19 pandemic have vocabulary size similar to historical norms. A higher-than-expected prevalence of late talkers (below the 10th percentile) was observed among females and children born during the first wave of the pandemic. Motivated by Bronfenbrenner's socioecological theory, we show that both proximal and distal environmental factors are associated with vocabulary size. Infants exposed to stricter public measures had reduced vocabulary size. The findings suggest a need to recognize the developmental needs of children as part of the public health response to emergencies.

3.
Brain Behav Immun ; 108: 309-327, 2023 02.
Article in English | MEDLINE | ID: mdl-36535610

ABSTRACT

Numerous studies have emphasised the importance of the gut microbiota during early life and its role in modulating neurodevelopment and behaviour. Epidemiological studies have shown that early-life antibiotic exposure can increase an individual's risk of developing immune and metabolic diseases. Moreover, preclinical studies have shown that long-term antibiotic-induced microbial disruption in early life can have enduring effects on physiology, brain function and behaviour. However, these studies have not investigated the impact of targeted antibiotic-induced microbiota depletion during critical developmental windows and how this may be related to neurodevelopmental outcomes. Here, we addressed this gap by administering a broad-spectrum oral antibiotic cocktail (ampicillin, gentamicin, vancomycin, and imipenem) to mice during one of three putative critical windows: the postnatal (PN; P2-9), pre-weaning (PreWean; P12-18), or post-weaning (Wean; P21-27) developmental periods and assessed the effects on physiology and behaviour in later life. Our results demonstrate that targeted microbiota disruption during early life has enduring effects into adolescence on the structure and function of the caecal microbiome, especially for antibiotic exposure during the weaning period. Further, we show that microbial disruption in early life selectively alters circulating immune cells and modifies neurophysiology in adolescence, including altered myelin-related gene expression in the prefrontal cortex and altered microglial morphology in the basolateral amygdala. We also observed sex and time-dependent effects of microbiota depletion on anxiety-related behavioural outcomes in adolescence and adulthood. Antibiotic-induced microbial disruption had limited and subtle effects on social behaviour and did not have any significant effects on depressive-like behaviour, short-term working, or recognition memory. Overall, this study highlights the importance of the gut microbiota during critical windows of development and the subtle but long-term effects that microbiota-targeted perturbations can have on brain physiology and behaviour.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mice , Anti-Bacterial Agents/pharmacology , Social Behavior , Gastrointestinal Microbiome/physiology , Anxiety
4.
Mol Psychiatry ; 27(12): 4928-4938, 2022 12.
Article in English | MEDLINE | ID: mdl-36104438

ABSTRACT

Stress-related psychiatric disorders such as depression are among the leading causes of morbidity and mortality. Considering that many individuals fail to respond to currently available antidepressant drugs, there is a need for antidepressants with novel mechanisms. Polymorphisms in the gene encoding FK506-binding protein 51 (FKBP51), a co-chaperone of the glucocorticoid receptor, have been linked to susceptibility to stress-related psychiatric disorders. Whether this protein can be targeted for their treatment remains largely unexplored. The aim of this work was to investigate whether inhibition of FKBP51 with SAFit2, a novel selective inhibitor, promotes hippocampal neuron outgrowth and neurogenesis in vitro and stress resilience in vivo in a mouse model of chronic psychosocial stress. Primary hippocampal neuronal cultures or hippocampal neural progenitor cells (NPCs) were treated with SAFit2 and neuronal differentiation and cell proliferation were analyzed. Male C57BL/6 mice were administered SAFit2 while concurrently undergoing a chronic stress paradigm comprising of intermittent social defeat and overcrowding, and anxiety and depressive -related behaviors were evaluated. SAFit2 increased neurite outgrowth and number of branch points to a greater extent than brain derived neurotrophic factor (BDNF) in primary hippocampal neuronal cultures. SAFit2 increased hippocampal NPC neurogenesis and increased neurite complexity and length of these differentiated neurons. In vivo, chronic SAFit2 administration prevented stress-induced social avoidance, decreased anxiety in the novelty-induced hypophagia test, and prevented stress-induced anxiety in the open field but did not alter adult hippocampal neurogenesis in stressed animals. These data warrant further exploration of inhibition of FKBP51 as a strategy to treat stress-related disorders.


Subject(s)
Hippocampus , Resilience, Psychological , Stress, Psychological , Tacrolimus Binding Proteins , Animals , Male , Mice , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Hippocampus/metabolism , Mice, Inbred C57BL , Neurogenesis/drug effects , Resilience, Psychological/drug effects , Stress, Psychological/metabolism , Tacrolimus Binding Proteins/antagonists & inhibitors , Tacrolimus Binding Proteins/metabolism
5.
Psychosom Med ; 84(2): 159-169, 2022.
Article in English | MEDLINE | ID: mdl-34654024

ABSTRACT

OBJECTIVE: Emerging evidence points toward a connection between mental health and the gut microbiota and its metabolites (e.g., short-chain fatty acids). It is unknown whether the gut microbiota is associated with the development of mental health problems (e.g., internalizing or externalizing behaviors) in preschool children. The objective of this study was to evaluate associations between the gut microbiota and internalizing and externalizing behaviors in preschool-aged children. METHODS: A community sample of 248 typically developing children (3-5 years of age) provided a stool sample for gut microbiota and SCFA analysis. Parents reported child internalizing and externalizing behaviors using the Child Behavior Checklist. Associations between child behaviors and gut microbiota measures were analyzed using Spearman correlations followed by an adjustment for multiple testing, with subanalysis conducted in children clinically "at risk" for behavioral problems compared with those who were not. RESULTS: There was a correlation between Shannon alpha diversity with internalizing behaviors (rs = -0.134, p = .035) and its subscale somatic complaints (rs = -0.144, p = .023). In addition, children clinically "at risk" for internalizing problems had decreased alpha diversity (U = 551, p = .017). Internalizing behaviors correlated with valerate and isobutyrate (rs = -0.147, p = .021; rs = -0.140, p = .028, respectively). Furthermore the somatic complaints subscale additionally correlated with acetate and butyrate (rs = -0.219, p = .001; rs = -0.241, p < .001, respectively). These findings were also present in children "at risk" for internalizing problems (U = 569, p = .026; U = 571, p = .028) and somatic complaints (U = 164, p = .004; U = 145, p = .001). CONCLUSIONS: These analyses reveal novel associations between internalizing behaviors and the gut microbiota in preschool children. Furthermore, a relationship between somatic complaints and acetate and butyrate was identified, indicating that interventions that increase SCFA production warrant future investigation.


Subject(s)
Gastrointestinal Microbiome , Problem Behavior , Child , Child Behavior , Child, Preschool , Fatty Acids, Volatile , Humans , Parents
6.
Brain Behav Immun ; 94: 463-468, 2021 05.
Article in English | MEDLINE | ID: mdl-33705869

ABSTRACT

There has been a growing recognition of the involvement of the immune system in stress-related disorders. Acute stress leads to the activation of neuroendocrine systems, which in turn orchestrate a large-scale redistribution of innate immune cells, such as monocytes. Even though acute stress/monocyte interactions have been well-characterized in mice, this is not the case for humans. As such, this study aimed to investigate whether acute stress modulates blood monocyte levels in a subtype-dependent manner and whether the receptor expression of stress-related receptors is affected in humans. Blood was collected from healthy female volunteers at baseline and 1 h after the socially evaluated cold pressor test, after which blood monocyte levels and receptor expression were assessed by flow cytometry. Our results reveal a stress-induced increase in blood monocyte levels, which was independent of monocyte subtypes. Furthermore, colony stimulating factor 1 receptor (CSF-1R) and CD29 receptor expression was increased, while CD62L showed a trend towards increased expression. These results provide novel insights into how acute stress affects the innate immune system.


Subject(s)
Monocytes , Animals , Female , Gene Expression , Mice
7.
Brain Behav Immun ; 97: 119-134, 2021 10.
Article in English | MEDLINE | ID: mdl-34252569

ABSTRACT

Autism spectrum disorder (ASD) is one of the most severe developmental disorders, affecting on average 1 in 150 children worldwide. There is a great need for more effective strategies to improve quality of life in ASD subjects. The gut microbiome has emerged as a potential therapeutic target in ASD. A novel modulator of the gut microbiome, the traditionally fermented milk drink kefir, has recently been shown to modulate the microbiota and decrease repetitive behaviour, one of the hallmarks of ASD, in mice. As such, we hypothesized that kefir could ameliorate behavioural deficits in a mouse model relevant to ASD; the BTBR T+ Itpr3tf/J mouse strain. To this end, adult mice were administered either kefir (UK4) or a milk control for three weeks as treatment lead-in, after which they were assessed for their behavioural phenotype using a battery of tests. In addition, we assessed systemic immunity by flow cytometry and the gut microbiome using shotgun metagenomic sequencing. We found that indeed kefir decreased repetitive behaviour in this mouse model. Furthermore, kefir prolonged stress-induced increases in corticosterone 60 min post-stress, which was accompanied by an ameliorated innate immune response as measured by LY6Chi monocyte levels. In addition, kefir increased the levels of anti-inflammatory Treg cells in mesenteric lymph nodes (MLNs). Kefir also increased the relative abundance of Lachnospiraceae bacterium A2, which correlated with reduced repetitive behaviour and increased Treg cells in MLNs. Functionally, kefir modulated various predicted gut microbial pathways, including the gut-brain module S-Adenosylmethionine (SAM) synthesis, as well as L-valine biosynthesis and pyruvate fermentation to isobutanol, which all correlated with repetitive behaviour. Taken together our data show that kefir modulates peripheral immunoregulation, can ameliorate specific ASD behavioural dysfunctions and modulates selective aspects of the composition and function of the gut microbiome, indicating that kefir supplementation might prove a viable strategy in improving quality of life in ASD subjects.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Kefir , Microbiota , Animals , Brain , Mice , Quality of Life
8.
Mol Psychiatry ; 25(10): 2567-2583, 2020 10.
Article in English | MEDLINE | ID: mdl-31092898

ABSTRACT

Male middle age is a transitional period where many physiological and psychological changes occur leading to cognitive and behavioural alterations, and a deterioration of brain function. However, the mechanisms underpinning such changes are unclear. The gut microbiome has been implicated as a key mediator in the communication between the gut and the brain, and in the regulation of brain homeostasis, including brain immune cell function. Thus, we tested whether targeting the gut microbiome by prebiotic supplementation may alter microglia activation and brain function in ageing. Male young adult (8 weeks) and middle-aged (10 months) C57BL/6 mice received diet enriched with a prebiotic (10% oligofructose-enriched inulin) or control chow for 14 weeks. Prebiotic supplementation differentially altered the gut microbiota profile in young and middle-aged mice with changes correlating with faecal metabolites. Functionally, this translated into a reversal of stress-induced immune priming in middle-aged mice. In addition, a reduction in ageing-induced infiltration of Ly-6Chi monocytes into the brain coupled with a reversal in ageing-related increases in a subset of activated microglia (Ly-6C+) was observed. Taken together, these data highlight a potential pathway by which targeting the gut microbiome with prebiotics can modulate the peripheral immune response and alter neuroinflammation in middle age. Our data highlight a novel strategy for the amelioration of age-related neuroinflammatory pathologies and brain function.


Subject(s)
Aging/immunology , Brain/immunology , Gastrointestinal Microbiome/physiology , Prebiotics , Animals , Feces/chemistry , Feces/microbiology , Male , Mice , Mice, Inbred C57BL , Microglia/immunology
9.
FASEB J ; 33(1): 518-531, 2019 01.
Article in English | MEDLINE | ID: mdl-30020830

ABSTRACT

The ghrelin receptor [growth hormone secretagogue receptor (GHSR)-1a] represents a promising pharmacologic target for the treatment of metabolic disorders, including obesity and cachexia, via central appetite modulation. The GHSR-1a has a complex pharmacology, highlighted by G-protein-dependent and -independent downstream signaling pathways and high basal constitutive activity. The functional selectivity and signaling bias of many GHSR-1a-specific ligands has not been fully characterized. In this study, we investigated the pharmacologic properties of ghrelin, MK-0677, L692,585, and [d-Lys3]-growth hormone-releasing peptide-6 (Dlys), JMV2959, and [d-Arg(1),d-Phe(5),d-Trp(7, 9),Leu(11)]-substance P (SP-analog). We investigated their effect on basal GHSR-1a constitutive signaling, ligand-directed downstream GHSR-1a signaling, functional selectivity, and signaling bias. Dlys behaved as a partial antagonist with a strong bias toward GHSR-1a-ß-arrestin signaling, whereas JMV2959 acted as a full unbiased GHSR-1a antagonist. Moreover, the SP-analog behaved as an inverse agonist increasing G-protein-dependent signaling, but only at high concentrations, whereas, at low concentrations, the SP-analog attenuated ß-arrestin-dependent signaling. Considering the limited success in the clinical development of GHSR-1a-targeted drugs so far, these findings provide a novel insight into the pharmacologic characteristics of GHSR-1a ligands and their signaling bias, which has important implications in the design of novel, more selective GHSR-1a ligands with predictable functional outcome and selectivity for preclinical and clinical drug development.-Ramirez, V. T., van Oeffelen, W. E. P. A., Torres-Fuentes, C., Chruscicka, B., Druelle, C., Golubeva, A. V., van de Wouw, M., Dinan, T. G., Cryan, J. F., Schellekens, H. Differential functional selectivity and downstream signaling bias of ghrelin receptor antagonists and inverse agonists.


Subject(s)
Ghrelin/pharmacology , Peptide Fragments/pharmacology , Receptors, Ghrelin/agonists , Receptors, Ghrelin/antagonists & inhibitors , beta-Arrestin 1/metabolism , HEK293 Cells , Humans , Receptors, Ghrelin/metabolism , Signal Transduction
10.
Brain Behav Immun ; 84: 209-217, 2020 02.
Article in English | MEDLINE | ID: mdl-31812778

ABSTRACT

There has been a growing recognition of the involvement of the gastrointestinal microbiota in the development of stress-related disorders. Acute stress leads to activation of neuroendocrine systems, which in turn orchestrate a large-scale redistribution of innate immune cells. Both these response systems are independently known to be primed by the microbiota, even though much is still unclear about the role of the gastrointestinal microbiota in acute stress-induced immune activation. In this study, we investigated whether the microbiota influences acute stress-induced changes in innate immunity using conventionally colonised mice, mice devoid of any microbiota (i.e. germ-free, GF), and colonised GF mice (CGF). We also explored the kinetics of stress-induced immune cell mobilisation in the blood, the spleen and mesenteric lymph nodes (MLNs). Mice were either euthanised prior to stress or underwent restraint stress and were then euthanised at various time points (i.e. 0, 45- and 240-minutes) post-stress. Plasma adrenaline and noradrenaline levels were analysed using ELISA and immune cell levels were quantified using flow cytometry. GF mice had increased baseline levels of adrenaline and noradrenaline, of which adrenaline was normalised in CGF mice. In tandem, GF mice had decreased circulating levels of LY6Chi and LY6Cmid, CCR2+ monocytes, and granulocytes, but not LY6C-, CX3CR1+ monocytes. These deficits were normalised in CGF mice. Acute stress decreased blood LY6Chi and LY6Cmid, CCR2+ monocytes while increasing granulocyte levels in all groups 45 min post-stress. However, only GF mice showed stress-induced changes in LY6Chi monocytes and granulocytes 240 min post-stress, indicating impairments in the recovery from acute stress-induced changes in levels of specific innate immune cell types. LY6C-, CX3CR1+ monocytes remained unaffected by stress, indicating that acute stress impacts systemic innate immunity in a cell-type-specific manner. Overall, these data reveal novel cell-type-specific changes in the innate immune system in response to acute stress, which in turn are impacted by the microbiota. In conclusion, the microbiota influences the priming and recovery of the innate immune system to an acute stressor and may inform future microbiota-targeted therapeutics aimed at modulating stress-induced immune activation in stress-related disorders.


Subject(s)
Cell Movement , Gastrointestinal Microbiome , Host Microbial Interactions , Immunity, Innate , Monocytes , Stress, Physiological , Animals , Gastrointestinal Microbiome/immunology , Host Microbial Interactions/immunology , Mice , Mice, Inbred C57BL , Myeloid Progenitor Cells/cytology , Stress, Physiological/immunology
11.
Brain Behav Immun ; 81: 74-91, 2019 10.
Article in English | MEDLINE | ID: mdl-31330299

ABSTRACT

The gastrointestinal microbiome has emerged as a key player in regulating brain and behaviour. This has led to the strategy of targeting the gut microbiota to ameliorate disorders of the central nervous system. Understanding the underlying signalling pathways in which the microbiota impacts these disorders is crucial for the development of future therapeutics for improving CNS functionality. One of the major pathways through which the microbiota influences the brain is the immune system, where there is an increasing appreciation for the role of monocyte trafficking in regulating brain homeostasis. In this review, we will shed light on the role of monocyte trafficking as a relay of microbiota signals in conditions where the central nervous system is in disorder, such as stress, peripheral inflammation, ageing, traumatic brain injury, stroke, multiple sclerosis, Alzheimer's disease and Parkinson's disease. We also cover how the gastrointestinal microbiota is implicated in these mental illnesses. In addition, we aim to discuss how the monocyte system can be modulated by the gut microbiota to mitigate disorders of the central nervous system, which will lead to novel microbiota-targeted strategies.


Subject(s)
Gastrointestinal Microbiome/immunology , Mental Disorders/immunology , Monocytes/immunology , Alzheimer Disease/metabolism , Animals , Brain/immunology , Brain/metabolism , Brain Injuries, Traumatic/metabolism , Central Nervous System/immunology , Gastrointestinal Microbiome/physiology , Humans , Inflammation/metabolism , Mental Disorders/microbiology , Mental Health , Microbiota/immunology , Microbiota/physiology , Monocytes/metabolism , Multiple Sclerosis/metabolism
12.
Brain Behav Immun ; 80: 583-594, 2019 08.
Article in English | MEDLINE | ID: mdl-31059807

ABSTRACT

Research into the molecular basis of stress resilience is a novel strategy to identify potential therapeutic strategies to treat stress-induced psychopathologies such as anxiety and depression. Stress resilience is a phenomenon which is not solely driven by effects within the central nervous system (CNS) but involves multiple systems, central and peripheral, which interact with and influence each other. Accordingly, we used the chronic social defeat stress paradigm and investigated specific CNS, endocrine and immune responses to identify signatures of stress-resilience and stress susceptibility in mice. Our results showed that mice behaviourally susceptible to stress (indexed by a reduction in social interaction behaviour) had higher plasma corticosterone levels and adrenal hypertrophy. An increase in inflammatory circulating monocytes was another hallmark of stress susceptibility. Furthermore, prefrontal cortex mRNA expression of corticotrophin-releasing factor (Crf) was increased in susceptible mice relative to resilient mice. We also report differences in hippocampal synaptic plasticity between resilient and susceptible mice. Ongoing studies will interpret the functional relevance of these signatures which could potentially inform the development of novel psychotherapeutic strategies.


Subject(s)
Adaptation, Psychological/physiology , Stress, Psychological/metabolism , Animals , Anxiety/metabolism , Behavior, Animal/physiology , Corticosterone/analysis , Corticosterone/blood , Corticotropin-Releasing Hormone/metabolism , Depression/metabolism , Hippocampus/metabolism , Interpersonal Relations , Male , Mice , Neuronal Plasticity/physiology , Neurosecretory Systems/metabolism , Prefrontal Cortex/metabolism , Resilience, Psychological , Social Behavior
13.
J Physiol ; 596(20): 4923-4944, 2018 10.
Article in English | MEDLINE | ID: mdl-30066368

ABSTRACT

KEY POINTS: Chronic (psychosocial) stress changes gut microbiota composition, as well as inducing behavioural and physiological deficits. The microbial metabolites short-chain fatty acids (SCFAs) have been implicated in gastrointestinal functional, (neuro)immune regulation and host metabolism, but their role in stress-induced behavioural and physiological alterations is poorly understood. Administration of SCFAs to mice undergoing psychosocial stress alleviates enduring alterations in anhedonia and heightened stress-responsiveness, as well as stress-induced increases in intestinal permeability. In contrast, chronic stress-induced alterations in body weight gain, faecal SCFAs and the gene expression of the SCFA receptors FFAR2 and FFAR3 remained unaffected by SCFA supplementation. These results present novel insights into mechanisms underpinning the influence of the gut microbiota on brain homeostasis, behaviour and host metabolism, informing the development of microbiota-targeted therapies for stress-related disorders. ABSTRACT: There is a growing recognition of the involvement of the gastrointestinal microbiota in the regulation of physiology and behaviour. Microbiota-derived metabolites play a central role in the communication between microbes and their host, with short-chain fatty acids (SCFAs) being perhaps the most studied. SCFAs are primarily derived from fermentation of dietary fibres and play a pivotal role in host gut, metabolic and immune function. All these factors have previously been demonstrated to be adversely affected by stress. Therefore, we sought to assess whether SCFA supplementation could counteract the enduring effects of chronic psychosocial stress. C57BL/6J male mice received oral supplementation of a mixture of the three principle SCFAs (acetate, propionate and butyrate). One week later, mice underwent 3 weeks of repeated psychosocial stress, followed by a comprehensive behavioural analysis. Finally, plasma corticosterone, faecal SCFAs and caecal microbiota composition were assessed. SCFA treatment alleviated psychosocial stress-induced alterations in reward-seeking behaviour, and increased responsiveness to an acute stressor and in vivo intestinal permeability. In addition, SCFAs exhibited behavioural test-specific antidepressant and anxiolytic effects, which were not present when mice had also undergone psychosocial stress. Stress-induced increases in body weight gain, faecal SCFAs and the colonic gene expression of the SCFA receptors free fatty acid receptors 2 and 3 remained unaffected by SCFA supplementation. Moreover, there were no collateral effects on caecal microbiota composition. Taken together, these data show that SCFA supplementation alleviates selective and enduring alterations induced by repeated psychosocial stress and these data may inform future research into microbiota-targeted therapies for stress-related disorders.


Subject(s)
Fatty Acids, Volatile/therapeutic use , Gastrointestinal Microbiome , Stress, Psychological/drug therapy , Animals , Intestinal Absorption , Male , Maze Learning , Mice , Mice, Inbred C57BL , Social Behavior , Stress, Psychological/microbiology
14.
J Nutr ; 147(5): 727-745, 2017 05.
Article in English | MEDLINE | ID: mdl-28356427

ABSTRACT

The gut harbors an enormous diversity of microbes that are essential for the maintenance of homeostasis in health and disease. A growing body of evidence supports the role of this microbiota in influencing host appetite and food intake. Individual species within the gut microbiota are under selective pressure arising from nutrients available and other bacterial species present. Each bacterial species within the gut aims to increase its own fitness, habitat, and survival via specific fermentation of dietary nutrients and secretion of metabolites, many of which can influence host appetite and eating behavior by directly affecting nutrient sensing and appetite and satiety-regulating systems. These include microbiota-produced neuroactives and short-chain fatty acids. In addition, the gut microbiota is able to manipulate intestinal barrier function, interact with bile acid metabolism, modulate the immune system, and influence host antigen production, thus indirectly affecting eating behavior. A growing body of evidence indicates that there is a crucial role for the microbiota in regulating different aspects of eating-related behavior, as well as behavioral comorbidities of eating and metabolic disorders. The importance of intestinal microbiota composition has now been shown in obesity, anorexia nervosa, and forms of severe acute malnutrition. Understanding the mechanisms in which the gut microbiota can influence host appetite and metabolism will provide a better understanding of conditions wherein appetite is dysregulated, such as obesity and other metabolic or eating disorders, leading to novel biotherapeutic strategies.


Subject(s)
Appetite , Brain , Eating , Feeding and Eating Disorders , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Nutrition Disorders , Feeding and Eating Disorders/etiology , Feeding and Eating Disorders/metabolism , Gastrointestinal Tract/metabolism , Humans , Nutrition Disorders/etiology , Nutrition Disorders/metabolism , Obesity/etiology , Obesity/metabolism
15.
Foods ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38472851

ABSTRACT

Scientific advancements in understanding the impact of bioactive components in foods on the gut microbiota and wider physiology create opportunities for designing targeted functional foods. The selection of bioactive ingredients with potential local or systemic effects holds promise for influencing overall well-being. An abundance of studies demonstrate that gut microbiota show compositional changes that correlate age and disease. However, navigating this field, especially for non-experts, remains challenging, given the abundance of bioactive ingredients with varying levels of scientific substantiation. This narrative review addresses the current knowledge on the potential impact of the gut microbiota on host health, emphasizing gut microbiota resilience. It explores evidence related to the extensive gut health benefits of popular dietary components and bioactive ingredients, such as phytochemicals, fermented greens, fibres, prebiotics, probiotics, and postbiotics. Importantly, this review distinguishes between the potential local and systemic effects of both popular and emerging ingredients. Additionally, it highlights how dietary hormesis promotes gut microbiota resilience, fostering better adaptation to stress-a hallmark of health. By integrating examples of bioactives, this review provides insights to guide the design of evidence-based functional foods aimed at priming the gut for resilience.

16.
Microbiome ; 12(1): 60, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515179

ABSTRACT

BACKGROUND: The gut microbiota is recognized as a regulator of brain development and behavioral outcomes during childhood. Nonetheless, associations between the gut microbiota and behavior are often inconsistent among studies in humans, perhaps because many host-microbe relationships vary widely between individuals. This study aims to stratify children based on their gut microbiota composition (i.e., clusters) and to identify novel gut microbiome cluster-specific associations between the stool metabolomic pathways and child behavioral outcomes. METHODS: Stool samples were collected from a community sample of 248 typically developing children (3-5 years). The gut microbiota was analyzed using 16S sequencing while LC-MS/MS was used for untargeted metabolomics. Parent-reported behavioral outcomes (i.e., Adaptive Skills, Internalizing, Externalizing, Behavioral Symptoms, Developmental Social Disorders) were assessed using the Behavior Assessment System for Children (BASC-2). Children were grouped based on their gut microbiota composition using the Dirichlet multinomial method, after which differences in the metabolome and behavioral outcomes were investigated. RESULTS: Four different gut microbiota clusters were identified, where the cluster enriched in both Bacteroides and Bifidobacterium (Ba2) had the most distinct stool metabolome. The cluster characterized by high Bifidobacterium abundance (Bif), as well as cluster Ba2, were associated with lower Adaptive Skill scores and its subcomponent Social Skills. Cluster Ba2 also had significantly lower stool histidine to urocanate turnover, which in turn was associated with lower Social Skill scores in a cluster-dependent manner. Finally, cluster Ba2 had increased levels of compounds involved in Galactose metabolism (i.e., stachyose, raffinose, alpha-D-glucose), where alpha-D-glucose was associated with the Adaptive Skill subcomponent Daily Living scores (i.e., ability to perform basic everyday tasks) in a cluster-dependent manner. CONCLUSIONS: These data show novel associations between the gut microbiota, its metabolites, and behavioral outcomes in typically developing preschool-aged children. Our results support the concept that cluster-based groupings could be used to develop more personalized interventions to support child behavioral outcomes. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Child, Preschool , Humans , Bifidobacterium/genetics , Chromatography, Liquid , Gastrointestinal Microbiome/genetics , Glucose , Metabolome , Metabolomics/methods , RNA, Ribosomal, 16S , Tandem Mass Spectrometry
17.
Nat Microbiol ; 9(2): 359-376, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38316929

ABSTRACT

The microbiota-gut-brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress. We found that chronic stress led to behavioural, immune and bacteriome alterations in mice that were associated with changes in the bacteriophage class Caudoviricetes and unassigned viral taxa. To determine whether these changes were causally related to stress-associated behavioural or physiological outcomes, we conducted a faecal virome transplant from mice before stress and autochthonously transferred it to mice undergoing chronic social stress. The transfer of the faecal virome protected against stress-associated behaviour sequelae and restored stress-induced changes in select circulating immune cell populations, cytokine release, bacteriome alterations and gene expression in the amygdala. These data provide evidence that the virome plays a role in the modulation of the microbiota-gut-brain axis during stress, indicating that these viral populations should be considered when designing future microbiome-directed therapies.


Subject(s)
Bacteriophages , Microbiota , Viruses , Animals , Mice , Virome , RNA, Ribosomal, 16S/genetics , Viruses/genetics , Bacteriophages/genetics , Immunity
18.
Psychoneuroendocrinology ; 158: 106380, 2023 12.
Article in English | MEDLINE | ID: mdl-37696229

ABSTRACT

OBJECTIVE: Stress is common among pregnant individuals and is associated with an altered gut microbiota composition in infants. It is unknown if these compositional changes persist into the preschool years when the gut microbiota reaches an adult-like composition. This study aimed to investigate if indicators of prenatal stress (i.e., psychological distress and stress-related physiology) are associated with children's gut microbiota composition and metabolites at 3-4 years of age. METHODS: Maternal-child pairs (n = 131) were from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. Each trimester, psychological distress was measured as symptoms of anxiety (Symptom Checklist-90-R) and depressed mood (Edinburgh Postnatal Depression Scale), whereas salivary cortisol was quantified as a measure of stress-related physiology. Child stool samples were collected at 3-4 years to evaluate gut microbiota composition using 16S rRNA gene sequencing and fecal metabolome using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Associations between prenatal distress and cortisol with the gut microbiota were determined using Pearson and Spearman correlations and corrected for multiple testing. Associations between prenatal distress and cortisol with the fecal metabolome were assessed using Metaboanalyst. RESULTS: Symptoms of depressed mood during the 2nd and 3rd trimesters and anxiety during the 2nd trimester of pregnancy were associated with increased alpha diversity of the child's gut microbiota. Cortisol levels during the 1st trimester were also associated with increased Faith PD diversity (r = 0.32), whereas cortisol levels during the 2nd trimester were associated with reduced Shannon diversity (r = -0.27). Depression scores during the 2nd and 3rd trimesters were associated with reductions in the relative abundances of Eggerthella, Parasutterella, and increases in Ruminococcaceae (rs = -0.28, rs = -0.32, rs = 0.32, respectively), as well as the fecal metabolome (e.g., branched-chain amino acid metabolism). Cortisol levels during the 2nd trimester correlated with 7 bacterial taxa, whereas 1st-trimester cortisol levels were associated with the child's fecal metabolome. CONCLUSIONS: Prenatal distress and cortisol were associated with both child gut microbiota composition and fecal metabolome at preschool age. Understanding these associations may allow for the identification of microbiota-targeted interventions to support child developmental outcomes affected by prenatal stress.


Subject(s)
Depression , Gastrointestinal Microbiome , Female , Pregnancy , Adult , Infant , Humans , Child, Preschool , Depression/metabolism , Hydrocortisone/analysis , Chromatography, Liquid , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S , Tandem Mass Spectrometry
19.
Neurosci Lett ; 810: 137357, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37355156

ABSTRACT

The relationship between the gut microbiota and neurocognitive outcomes is becoming increasingly recognized; however, findings in humans are inconsistent. In addition, few studies have investigated the gut microbial metabolites that may mediate this relationship. The objective of this study was to investigate associations between full-scale intelligence (FSIQ) and the composition of the gut microbiota and metabolome in preschool children. Stool samples were collected from a community sample of 245 typically developing children (3-5 years) from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. The faecal microbiome was assessed using 16S rRNA sequencing and the metabolome using LC-MS/MS. FSIQ and scores on the Verbal Comprehension, Visual Spatial, Working Memory indices of the Wechsler Preschool and Primary Scale of Intelligence-IV were used to assess neurocognition. Associations between the gut microbiota and FSIQ were determined using Pearson and Spearman correlations, which were corrected for multiple testing and relevant covariates. Verbal Comprehension correlated negatively with both Shannon alpha diversity (r = -0.14, p = 0.032) and the caffeine-derived metabolite paraxanthine (r = -0.22, p < 0.001). No other significant correlations were observed. Overall, the weak to modest correlations between Verbal Comprehension with alpha diversity and paraxanthine provide limited evidence of an association between the gut microbiota and neurocognitive outcomes in typically developing preschool children.


Subject(s)
Gastrointestinal Microbiome , Humans , Child, Preschool , RNA, Ribosomal, 16S , Chromatography, Liquid , Tandem Mass Spectrometry , Intelligence
20.
Data Brief ; 49: 109366, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37456119

ABSTRACT

The COVID-19 pandemic was a substantial stressor, especially for pregnant individuals. We aimed to understand the impact of COVID-19-related stresses on pregnant individuals and their infants and collected survey-based data across Canada as part of the Pregnancy during the COVID-19 Pandemic (PdP) project. The dataset described here provides baseline prenatal data and basic birth outcomes from PdP participants. This data includes information from pregnant individuals as well as their infants. At enrolment and time of completion of the baseline survey, participants were pregnant, ≥17 years of age, ≤35 weeks of gestation, living in Canada, and able to read and write in English or French. Baseline data were collected between April 2020-April 2021. Infant data were collected between May 2020-December 2021. All data were collected via self-report using online questionnaires in REDCAP. Questionnaires were available in both English and French. Data were checked for completeness and plausibility, and duplicates were removed. The dataset described here includes age, education, and household income of the pregnant individuals reported at the baseline/enrollment survey. Raw scores are provided for the Edinburgh Postnatal Depression Scale (EPDS) and the PROMIS Anxiety scale. Ratings are also given for three variables describing fear of the COVID-19 virus. Birth outcomes are provided for infants, including gestational age at birth, birthweight, length, mode of delivery, and whether the infant spent time in the neonatal intensive care unit (NICU). Delivery date is reported as month and year. These data will be beneficial for anyone interested in researching stress during pregnancy or birth outcomes in the context of the COVID-19 pandemic. They will also be useful to researchers interested in examining more general effects of prenatal distress on birth outcomes in children. Data could also be compared to other datasets from the COVID-19 pandemic to establish generalizability, or to pre-pandemic datasets to determine the extent of changes during the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL